其他研究论文

中间投入对农户耕地利用绿色转型的影响——基于“U”型关系的诊断分析

  • 牛善栋 , 1, 2, 3 ,
  • 吕晓 , 2, 3 ,
  • 谷国政 1
展开
  • 1.中国矿业大学公共管理学院,徐州 221116
  • 2.东北大学文法学院,沈阳 110169
  • 3.自然资源部碳中和与国土空间优化重点实验室,南京 210023
吕晓(1984- ),男,山东茌平人,博士,教授,博士生导师,研究方向为土地利用与乡村发展。E-mail:

牛善栋(1991- ),女,山东枣庄人,博士,讲师,研究方向为土地政策与耕地保护。E-mail:

收稿日期: 2024-09-18

  修回日期: 2025-02-06

  网络出版日期: 2025-06-20

基金资助

国家自然科学基金项目(42261144750)

国家自然科学基金项目(42371292)

辽宁省自然科学基金项目(2024-MSBA-38)

自然资源部碳中和与国土空间优化重点实验室开放基金(CNTO-KFJJ-202311)

The effect of intermediate input on the green transition of cultivated land use: A diagnostic analysis based on the U-shaped relationship

  • NIU Shan-dong , 1, 2, 3 ,
  • LYU Xiao , 2, 3 ,
  • GU Guo-zheng 1
Expand
  • 1. School of Public Administration, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
  • 2. School of Humanities and Law, Northeastern University, Shenyang 110169, China
  • 3. The Key Laboratory of Carbon Neutrality and Territory Optimization, Ministry of Natural Resources, Nanjing 210023, China

Received date: 2024-09-18

  Revised date: 2025-02-06

  Online published: 2025-06-20

摘要

耕地利用绿色转型(GTCLU)是全球气候变化背景下构建水土协调的耕地保护新格局的重要途径,对保障农产品质量安全和促进农业绿色发展具有重要意义。基于沈阳市农户调查,探讨耕地利用绿色转型内涵,测算农户尺度GTCLU,理论解析并实证检验中间投入如何影响其转型水平。研究发现:(1)耕地利用绿色转型建立了“水—地—粮—碳”复合映射关系,具有资源节约高效、产地环境良好、产品质量安全、生态环境友好等特征。(2)样本农户GTCLU集中于“转型类型Ⅲ”,处于转型类型Ⅳ的规模户多于小农户。家庭人均收入和非农收入占比越高,农户GTCLU水平就越低;农村数字化水平越高,农户GTCLU水平就越高。(3)中间投入与农户GTCLU存在倒“U”型关系,当中间投入强度超过0.375时则对农户GTCLU水平产生抑制效应。(4)社会规范对中间投入与农户GTCLU的倒“U”型关系产生正向调节作用,随着社会规范约束增强,倒“U”型曲线更加陡峭且拐点左移;环境规制影响倒“U”型关系存在经营规模异质性,不影响规模户而对小农户产生显著作用。应进一步优化中间投入结构,增强社会规范软约束机制,充分发挥环境规制工具组合力,合理推动农户耕地利用绿色转型。

本文引用格式

牛善栋 , 吕晓 , 谷国政 . 中间投入对农户耕地利用绿色转型的影响——基于“U”型关系的诊断分析[J]. 自然资源学报, 2025 , 40(7) : 1857 -1879 . DOI: 10.31497/zrzyxb.20250708

Abstract

The green transition of cultivated land Use (GTCLU) is of great significance for building a new pattern of cultivated protection with coordinated development of water and soil resources under the background of global climate change, ensuring the quality and safety of agricultural products, and promoting green agricultural development. Based on field surveys of farmers in Shenyang, this study explores the conceptual connotation of GTCLU and estimate its level at the farmer household scale, and theoretically analyzes and empirically tests whether and how intermediate inputs affected the GTCLU. The results indicate that: (1) The GTCLU has established a composite mapping relationship of ''water, land, food, and carbon'', which has the development characteristics of resource conservation and efficiency, good production environment, product quality and safety, and ecological environment friendliness. (2) The GTCLU level of sample farmers is observed in the transition type III, and compared to small farmers, the proportion of large-scale households in transition type IV is relatively large. The higher the proportion of per capita household income and non-agricultural income, the lower the GTCLU level of farmers. With the improvement of rural digitalization level, the GTCLU level of farmers is gradually increasing. (3) There is an inverted U-shaped relationship between intermediate input and farmers' GTCLU level, that is, when the intensity of intermediate input exceeds 0.375, it will have a suppressive effect on farmers' GTCLU level. (4) Social norms have a positive moderating effect on the inverted U-shaped relationship between intermediate inputs and farmers' GTCLU levels. As social norm constraints continue to strengthen, the inverted U-shaped curve becomes steeper and the inflection point shifts to the left. The impact of environmental regulations on the inverted U-shaped relationship exhibits heterogeneity in business scale, meaning it does not affect large-scale households but has a significant effect on small-scale farmers. Therefore, it is necessary to further optimize the structure of intermediate inputs, enhance the soft constraint mechanism of social norms, fully utilize the combination of environmental regulatory tools, and promote the green transition of cultivated land use at the farmer household scale in a scientific and reasonable manner.

[1]
TAYLOR I, BULL J W, ASHTON B, et al. Nature-positive goals for an organization's food consumption. Nature Food, 2023, 4(1): 96-108.

DOI PMID

[2]
吴亚玲, 杨汝岱, 吴比, 等. 中国农业全要素生产率演进与要素错配: 基于2003—2020年农村固定观察点数据的分析. 中国农村经济, 2022, (12): 35-53.

[WU Y L, YANG R D, WU B, et al. The evolution of China's Agricultural total factor productivity and factor misallocation: An analysis based on the data of national fixed observation points in rural areas from 2003 to 2020. Chinese Rural Economy, 2022, (12): 35-53.]

[3]
金书秦, 林煜, 牛坤玉. 以低碳带动农业绿色转型: 中国农业碳排放特征及其减排路径. 改革, 2021, (5): 29-37.

[JIN S Q, LIN Y, NIU K Y. Driving green transformation of agriculture with low carbon: Characteristics of agricultural carbon emissions and its emission reduction path in China. Reform, 2021, (5): 29-37.]

[4]
卢新海, 崔海莹, 柯善淦, 等. 湖北省耕地利用绿色转型与粮食全要素生产率的耦合协调及其驱动机制研究. 中国土地科学, 2022, 36(8): 75-84.

[LU X H, CUI H Y, KE S G, et al. Coupling coordination and driving mechanism of green transition of farmland use and total factor productivity of grain in Hubei province. China Land Science, 2022, 36(8): 75-84.]

[5]
吕添贵, 付舒斐, 胡晗, 等. 农业绿色转型约束下耕地绿色利用效率动态演进及其收敛特征研究: 以长江中游粮食主产区为例. 中国土地科学, 2023, 37(4): 107-118.

[LYU T G, FU S F, HU H, et al. Dynamic evolution and convergence characteristics of cultivated land green use efficiency based on the constraint of agricultural green transition: Taking the main grain producing areas in the middle reaches of the Yangtze River as an example. China Land Science, 2023, 37(4): 107-118.]

[6]
柯善淦, 崔海莹, 卢新海, 等. 耕地利用绿色转型的时空格局及其驱动机制研究: 以湖北省为例. 中国土地科学, 2021, 35(12): 64-74.

[KE S G, CUI H Y, LU X H, et al. Research on the spatial-temporal pattern and mechanisms of green transition of farmland use: A case of Hubei province. China Land Science, 2021, 35(12): 64-74.]

[7]
匡兵, 范翔宇, 卢新海. 中国耕地利用绿色转型效率的时空分异特征及其影响因素. 农业工程学报, 2021, 37(21): 269-277.

[KUANG B, FAN X Y, LU X H. Spatial-temporal differentiation characteristics of the efficiency of green transformation of cultivated land use and its affecting factors in China. Transactions of the CSAE, 2021, 37(21): 269-277.]

[8]
杨志海, 王洁. 劳动力老龄化对农户粮食绿色生产行为的影响研究: 基于长江流域六省农户的调查. 长江流域资源与环境, 2020, 29(3): 725-737.

[YANG Z H, WANG J. How can the aging of agricultural labor affect green grain production: Based on the survey of farmers in six provinces along the Yangtze River. Resources and Environment in the Yangtze Basin, 2020, 29(3): 725-737.]

[9]
陈卫平, 王笑丛. 制度环境对农户生产绿色转型意愿的影响: 新制度理论的视角. 东岳论丛, 2018, 39(6): 114-123, 192.

[CHEN W P, WANG X C. The effects of institutional environments on farmers' intentions of conversing to green farming: A perspective of institutional theory. Dongyue Tribune, 2018, 39(6): 114-123, 192.]

[10]
肖剑, 罗必良. 小农的绿色发展转型: 人力资本维度的考察: 来自农民工回流农户的证据. 华中农业大学学报: 社会科学版, 2023, (5): 20-30.

[XIAO J, LUO B L. Green development transformation of smallholder farmers: An examination from the perspective of human capital: Evidence from migrant workers returning to rural households. Journal of Huazhong Agricultural University: Social Sciences Edition, 2023, (5): 20-30.]

[11]
于艳丽, 李桦. 社区监督、风险认知与农户绿色生产行为: 来自茶农施药环节的实证分析. 农业技术经济, 2020, (12): 109-121.

[YU Y L, LI H. Community supervision, risk perception and farmers' green production: Empirical analysis from the application of tea growers. Journal of Agrotechnical Economics, 2020, (12): 109-121.]

[12]
刘晓燕, 章丹, 徐志刚. 粮食规模经营户化肥施用也“过量” 吗: 基于规模户和普通户异质性的实证. 农业技术经济, 2020, (9): 117-129.

[LIU X Y, ZHANG D, XU Z G. Does grain scale farmers also overuse fertilizer: Based on the heterogeneity of large-sized farmers and small-sized farmers. Journal of Agrotechnical Economics, 2020, (9): 117-129.]

[13]
魏后凯. 中国农业发展的结构性矛盾及其政策转型. 中国农村经济, 2017, (5): 2-17.

[WEI H K. Structural contradiction and policy transformation of agricultural development in China. Chinese Rural Economy, 2017, (5): 2-17.]

[14]
LEI S H, YANG X, QIN J H. Does agricultural factor misallocation hinder agricultural green production efficiency? Evidence from China. Science of the Total Environment, 2023, 891: 164466, Doi:10.1016/j.scitotenv.2023.164466.

[15]
吕晓, 孙晓雯, 彭文龙. 耕地转入对耕地利用可持续集约化的影响: 基于经营规模、细碎化水平的作用路径分析. 自然资源学报, 2024, 39(3): 620-639.

DOI

[LYU X, SUN X W, PENG W L. The effect of cultivated land renting-in on sustainable intensification of cultivated land use: Analysis of the mediating effect of management scale and fragmentation level. Journal of Natural Resources, 2024, 39(3): 620-639.]

DOI

[16]
张馥林, 陈美球, 黄庆龙, 等. 农户绿色生产技术采纳的邻里效应分析: 基于农技推广和农户认知的调节作用. 中国土地科学, 2023, 37(5): 67-78.

[ZHANG F L, CHEN M Q, HUANG Q L, et al. Analysis of neighborhood effects of farmers' green production technology adoption: Moderating effects based on agrotechnology extension and farmers' perceptions. China Land Science, 2023, 37(5): 67-78.]

[17]
张英楠, 尹彦舒, 张康洁, 等. 农业社会化服务能否促进小麦种植户绿色生产转型: 基于河南、山东、山西的农户调查证据. 中国人口·资源与环境, 2023, 33(6): 172-181.

[ZHANG Y N, YIN Y S, ZHANG K J, et al. Can socialized agricultural services promote wheat growers' green production transformation? Evidence from Henan, Shandong, and Shanxi in China. China Population, Resources and Environment, 2023, 33(6): 172-181.]

[18]
莫经梅, 张社梅. 城市参与驱动小农户生产绿色转型的行为逻辑: 基于成都蒲江箭塔村的经验考察. 农业经济问题, 2021, 42(11): 77-88.

[MO J M, ZHANG S M. Urban participation in driving the green transformation of farmers' production behavioral logic: Based on the experience survey of Jianta village, Pujiang county, Chengdu. Issues in Agricultural Economy, 2021, 42(11): 77-88.]

[19]
任重, 郭焱. 环境规制、社会资本对农户低碳农业技术采纳行为的影响. 自然资源学报, 2023, 38(11): 2872-2888.

DOI

[REN Z, GUO Y. The effect of environmental regulation and social capital on farmers' adoption behavior of low-carbon agricultural technology. Journal of Natural Resources, 2023, 38(11): 2872-2888.]

DOI

[20]
赵秋倩, 夏显力. 社会规范何以影响农户农药减量化施用: 基于道德责任感中介效应与社会经济地位差异的调节效应分析. 农业技术经济, 2020, (10): 61-73.

[ZHAO Q Q, XIA X L. How does social norms affect the reduction of pesticide application by farmers: Analysis of the regulating effect of the difference between the mediating effect of moral responsibility and social economic status. Journal of Agrotechnical Economics, 2020, (10): 61-73.]

[21]
刘笑杰, 金晓斌, 罗秀丽, 等. 城乡融合对低碳土地利用效率影响的空间效应: 以长三角地区为例. 自然资源学报, 2024, 39(6): 1299-1319.

DOI

[LIU X J, JIN X B, LUO X L, et al. Spatial effects of urban-rural integration on low-carbon land use efficiency: A case study of the Yangtze River Delta. Journal of Natural Resources, 2024, 39(6): 1299-1319.]

[22]
柯新利, 邓洁, 宋钰. 长江经济带耕地利用绿色转型与城乡融合耦合协调发展的时空格局研究. 生态学报, 2024, 44(13): 5773-5785.

[KE X L, DENG J, SONG Y. Spatial-temporal pattern of coupling coordination between green transition of farmland use and urban-rural integration development in the Yangtze River Economic Belt. Acta Ecologica Sinica, 2024, 44(13): 5773-5785.]

[23]
胡鞍钢, 周绍杰. 绿色发展: 功能界定、机制分析与发展战略. 中国人口·资源与环境, 2014, 24(1): 14-20.

[HU A G, ZHOU S J. Green development: Functional definition, mechanism analysis and development strategy. China Population, Resources and Environment, 2014, 24(1): 14-20.]

[24]
LONG H L. Theorizing land use transitions: A human geography perspective. Habitat International, 2022, 128: 102669, Doi: 10.1016/j.habitatint.2022.102669.

[25]
ZHUANG J, LÖFFLER F E, SAYLER G S. Creating a research enterprise framework for transdisciplinary networking to address the food-energy-water nexus. Engineering, 2022, 11: 95-100.

[26]
NIU S D, LYU X, GU G Z. What is the operation logic of cultivated land protection policies in China? A grounded theory analysis. Sustainability, 2022, 14(14): 8887, Doi: 10.3390/su14148887.

[27]
周小平, 申端帅, 谷晓坤, 等. 大都市全域土地综合整治与耕地多功能: 基于“情境—结构—行为—结果” 的分析. 中国土地科学, 2021, 35(9): 94-104.

[ZHOU X P, SHEN D S, GU X K, et al. Comprehensive land consolidation and multifunctional cultivated land in metropolis: The analysis based on the ''situation-structure-implementation-outcome''. China Land Science, 2021, 35(9): 94-104.]

[28]
龚斌磊. 投入要素与生产率对中国农业增长的贡献研究. 农业技术经济, 2018, (6): 4-18.

[GONG B L. The contribution of inputs and productivity to agricultural growth in China. Journal of Agrotechnical Economics, 2018, (6): 4-18.]

[29]
谢贤胜, 陈绍志, 赵荣. 生态产品价值实现的实践逻辑: 基于自然资源领域87个典型案例的扎根理论研究. 自然资源学报, 2023, 38(10): 2504-2522.

DOI

[XIE X S, CHEN S Z, ZHAO R. The practical logic of ecological product value realization: A study of grounded theory based on 87 typical cases in the field of natural resources. Journal of Natural Resources, 2023, 38(10): 2504-2522.]

[30]
郑旭媛, 徐志刚. 资源禀赋约束、要素替代与诱致性技术变迁: 以中国粮食生产的机械化为例. 经济学(季刊), 2017, 17(1): 45-66.

[ZHENG X Y, XU Z G. Endowment restriction, factor substitution and induced technological innovation: A case research on the grain producing mechanization in China. China Economic Quarterly, 2017, 17(1): 45-66.]

[31]
ZHANG W F, DOU Z X, HE P, et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. PNAS, 2013, 110(21): 8375-8380.

[32]
LOVARELLI D, BACENETTI J, FIALA M. Water footprint of crop productions: A review. Science of the Total Environment, 2016, 548: 236-251.

[33]
范星, 陈彬. 三江平原粮食作物生产水足迹时空特征及影响因素. 生态学报, 2022, 42(15): 6368-6380.

[FAN X, CHEN B. Spatio-temporal patterns and influencing factors of the water footprint of grain crop production in the Sanjiang Plain. Acta Ecologica Sinica, 2022, 42(15): 6368-6380.]

[34]
WEN L Y, LEI M, ZHANG B B, et al. Significant increase in gray water footprint enhanced the degradation risk of cropland system in China since 1990. Journal of Cleaner Production, 2023, 423: 138715, Doi:10.1016/j.jclepro.2023.138715.

[35]
李宏宇, 张华泰, 董晓志, 等. 水足迹评价手册:中国的水足迹评价方法及其应. 北京: 清华大学出版社, 2017.

[LI H Y, ZHANG H T, DONG X Z, et al. Handbook of Water Footprint Assessment:China's Water Footprint Assessment Methods and Their Applications. Beijing: Tsinghua University Press, 2017.]

[36]
方恺. 足迹家族: 概念、类型、理论框架与整合模式. 生态学报, 2015, 35(6): 1647-1659.

[FANG K. Footprint family: Concept, classification, theoretical framework and integrated pattern. Acta Ecologica Sinica, 2015, 35(6): 1647-1659.]

[37]
靳亚亚, 柳乾坤, 李陈. 基于改进三维生态足迹模型的耕地承载力评价: 以江苏省为例. 中国土地科学, 2020, 34(9): 96-104.

[JIN Y Y, LlU Q K, Ll C. Evaluation of cultivated land carrying capacity based on an improved threedimension ecological footprint model: A case study of Jiangsu province. China Land Science, 2020, 34(9): 96-104.]

[38]
MANZARDO A, MAZZI A, LOSS A, et al. Lessons learned from the application of different water footprint approaches to compare different food packaging alternatives. Journal of Cleaner Production, 2016, 112: 4657-4666.

[39]
赵先贵, 马彩虹, 赵晶, 等. 足迹家族的改进及其在新疆生态文明建设评价中的应用. 地理研究, 2016, 35(12): 2384-2394.

DOI

[ZHAO X G, MA C H, ZHAO J, et al. Improvement of the Footprint Family and evaluation of ecological civilization in the Xinjiang, China. Geographical Research, 2016, 35(12): 2384-2394.]

[40]
AL-MANSOUR F, JEJCIC V. A model calculation of the carbon footprint of agricultural products: The case of Slovenia. Energy, 2017, 136: 7-15.

[41]
LIU Z, TIAN J L, WANG K X, et al. The impact of farmland circulation on the carbon footprint of agricultural cultivation in China. Economic Analysis and Policy, 2023, 78: 792-801.

[42]
EGGLESTON S, BUENDIA L, MIWA K, et al. 2006 IPCC guidelines for national greenhouse gas inventories. IGES: Japan, 2006.

[43]
CUI S H, SHI Y L, GROFFMAN P M, et al. Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910-2010). PNAS, 2013, 110(6): 2052-2057.

DOI PMID

[44]
李书田, 金继运. 中国不同区域农田养分输入、输出与平衡. 中国农业科学, 2011, 44(20): 4207-4229.

DOI

[LI S T, JIN J Y. Characteristics of nutrient input/output and nutrient balance in different regions of China. Scientia Agricultura Sinica, 2011, 44(20): 4207-4229.]

[45]
LIU X, SHENG H, JIANG S Y, et al. Intensification of phosphorus cycling in China since the 1600s. PNAS, 2016, 113(10): 2609-2614.

DOI PMID

[46]
刘某承, 李文华, 谢高地. 基于净初级生产力的中国生态足迹产量因子测算. 生态学杂志, 2010, 29(3): 592-597.

[LIU M C, LI W H, XIE G D. Estimation of China ecological footprint production coefficient based on net primary productivity. Chinese Journal of Ecology, 2010, 29(3): 592-597.]

[47]
刘某承, 李文华. 基于净初级生产力的中国生态足迹均衡因子测算. 自然资源学报, 2009, 24(9): 1550-1559.

DOI

[LIU M C, LI W H. The calculation of China's equivalence factor under ecological footprint mode based on net primary production. Journal of Natural Resources, 2009, 24(9): 1550-1559.]

[48]
谢光辉, 王晓玉, 韩东倩, 等. 中国非禾谷类大田作物收获指数和秸秆系数. 中国农业大学学报, 2011, 16(1): 9-17.

[XIE G H, WANG X Y, HAN D Q, et al. Harvest index and residue factor of non-cereal crops in China. Journal of China Agricultural University, 2011, 16(1): 9-17.]

[49]
WEST P C, GERBER J S, ENGSTROM P M, et al. Leverage points for improving global food security and the environment. Science, 2014, 345(6194): 325-328.

DOI PMID

[50]
陈舜, 逯非, 王效科. 中国氮磷钾肥制造温室气体排放系数的估算. 生态学报, 2015, 35(19): 6371-6383.

[CHEN S, LU F, WANG X K. Estimation of greenhouse gases emission factors for China's nitrogen, phosphate, and potash fertilizers. Acta Ecologica Sinica, 2015, 35(19): 6371-6383.]

[51]
朱永昶, 李玉娥, 姜德锋, 等. 基于生命周期评估的冬小麦—夏玉米种植系统碳足迹核算: 以山东省高密地区为例. 农业资源与环境学报, 2017, 34(5): 473-482.

[ZHU Y C, LI Y E, JIANG D F, et al. Life cycle assessment on carbon footprint of winter wheat-summer maize cropping system based on survey data of Gaomi in Shandong province, China. Journal of Agricultural Resources and Environment, 2017, 34(5): 473-482.]

[52]
伍芬琳, 李琳, 张海林, 等. 保护性耕作对农田生态系统净碳释放量的影响. 生态学杂志, 2007, 26(12): 2035-2039.

[WU F L, LI L, ZHANG H L, et al. Effects of conservation tillage on net carbon flux from farmland ecosystems. Chinese Journal of Ecology, 2007, 26(12): 2035-2039.]

[53]
闵继胜, 胡浩. 中国农业生产温室气体排放量的测算. 中国人口·资源与环境, 2012, 22(7): 21-27.

[MIN J S, HU H. Calculation of greenhouse gases emission from agricultural production in China. China Population, Resources and Environment, 2012, 22(7): 21-27.]

文章导航

/