JOURNAL OF NATURAL RESOURCES >
Calculation of carbon-emission reduction and enlightenment for mountainous summer tourism of Sichuan and Chongqing
Received date: 2023-05-08
Revised date: 2023-10-15
Online published: 2024-01-16
Tourism is often considered to increase carbon emissions. However, mountainous summer tourism involve travel from high-carbon emitting origin regions to low-carbon emitting destinations, potentially resulting in carbon reduction effects. It is necessary to calculate the carbon reduction amount and study the carbon reduction mechanism of mountainous summer tourism. Taking the Sichuan and Chongqing regions as a case study, this research examines the carbon reduction benefits and mechanisms of mountainous summer tourism from both the origin and destination perspectives. The central part of the Sichuan Basin experiences hot summers, while the surrounding mountains offer lower temperatures, making nearby mountainous summer tourism a popular choice for local residents. Employing push-pull theory, we developed a predictive model for tourism flows in mountainous summer tourism to obtain tourism flow data. Carbon emissions from air conditioning use, tourism transportation, and building renovation were used as indicators to calculate the carbon reduction resulting from mountainous summer tourism. The study reveals that: (1) Tourists to mountainous summer tourism, due to tourism traffic and building renovation, will increase carbon emissions, and the emission amounts are not negligible. (2) From both the origin and destination perspectives, the carbon reduction benefits of mountainous summer tourism in the Sichuan and Chongqing regions are evident. During July and August, carbon reduction can reach a maximum value ranging from 359200 to 1159200 tons. The research demonstrates the significant potential for carbon reduction in mountainous summer tourism, highlighting the importance of promoting such tourism for fostering high-quality development in the Chengdu-Chongqing Urban Agglomeration.
HUI Hong , WU Tong , LONG Gui-xiang , ZHANG Ren-jun . Calculation of carbon-emission reduction and enlightenment for mountainous summer tourism of Sichuan and Chongqing[J]. JOURNAL OF NATURAL RESOURCES, 2024 , 39(1) : 170 -185 . DOI: 10.31497/zrzyxb.20240110
表1 海拔与山区农家乐空调安装率Table 1 Elevation and air conditioning installation rate in mountainous agritainment |
海拔/m | 800~900 | 900~1000 | 1000~1100 | 1100~1200 | 1200~1300 | 1300以上 |
---|---|---|---|---|---|---|
空调安装率/% | 34.2 | 21.7 | 10.3 | 4.3 | 1.2 | 0 |
表2 川渝居民山区避暑游比例Table 2 The proportion of mountainous summer tourism taken by residents in the Sichuan and Chongqing |
居住时长 | 未出行 | 1周以内 | 1周至1个月 | 1个月以上 | 总人数 |
---|---|---|---|---|---|
人数/人 | 810 | 143 | 138 | 123 | 1214 |
占比/% | 66.7 | 11.8 | 11.4 | 10.1 | 100 |
表3 目的地夏季空调使用时长Table 3 Duration of air conditioning usage in destination during summer |
夏季空调使用时长/h | 0 | 1~100 | 101~200 | 201~300 | 301~400 | 合计 |
---|---|---|---|---|---|---|
目的地数量/个 | 312 | 175 | 127 | 87 | 13 | 714 |
占比/% | 43.70 | 24.51 | 17.79 | 12.18 | 1.82 | 100 |
表4 川渝山区避暑游旅游交通时间分布Table 4 Distribution of travel time for mountainous summer tourism in Sichuan and Chongqing |
驾车时长/h | <1 | 1~2 | 2~3 | 3~4 | 4~5 | 5~6 | 6~7 | 7~8 | 8~9 | 9~10 | >10 | 合计 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
人数/万人 | 15.39 | 74.43 | 114.13 | 111.32 | 109.83 | 94.16 | 68.91 | 39.68 | 29.63 | 19.41 | 31.26 | 708.15 |
占比/% | 2.17 | 10.51 | 16.12 | 15.72 | 15.51 | 13.30 | 9.73 | 5.60 | 4.18 | 2.74 | 4.41 | 100 |
表5 川渝山区避暑游碳排放测算表Table 5 Carbon emission calculation of mountainous summer tourism in Sichuan and Chongqing (万t) |
交通方式 | 小汽车 | 铁路 | 公共汽车 |
---|---|---|---|
旅游交通减碳量 | -38.99 | -13.00 | -9.36 |
空调使用减碳量 | 71.10~151.19(1~2个月) | ||
建筑改造减碳量 | -25.92 | ||
总减碳量 | 6.19~86.28 | 32.18~112.27 | 35.82~115.92 |
[1] |
蔡萌, 安德鲁·弗兰. 全球旅游碳排放研究进展. 中国人口·资源与环境, 2013, 23(s2): 1-4.
[
|
[2] |
|
[3] |
|
[4] |
查瑞波, 许进鎔, 王善杰. 碳排放视角下入境旅游对共同富裕的影响. 自然资源学报, 2023, 38(5): 1210-1224.
[
|
[5] |
|
[6] |
|
[7] |
李嘉欣, 谢德体, 王三, 等. 基于兴趣点(POI)挖掘的重庆主城区农家乐空间分布特征. 生态与农村环境学报, 2020, 36(3): 300-307.
[
|
[8] |
赵永青. 重庆市乡村旅游空间分布特征及优化评价. 中国农业资源与区划, 2019, 40(7): 216-220.
[
|
[9] |
杨俊, 张永恒, 席建超. 中国避暑旅游基地适宜性综合评价研究. 资源科学, 2016, 38(12): 2210-2220.
[
|
[10] |
|
[11] |
|
[12] |
陶玉国, 张红霞. 江苏旅游能耗和碳排放估算研究. 南京社会科学, 2011, (8): 151-156.
[
|
[13] |
查晓莉, 徐雨晨, 陆林, 等. 上海迪士尼国内旅游流地理分布与流动特征. 旅游学刊, 2019, 34(6): 58-73.
[
|
[14] |
石晓腾, 吴晋峰, 吴宝清, 等. 多元交通视角下异质旅游流分布特征及其空间共轭关系. 地理科学, 2022, 42(9): 1546-1554.
[
|
[15] |
孙根年, 马丽君. 西安旅游气候舒适度与客流量年内变化相关性分析. 旅游学刊, 2007, 32(7): 34-39.
[
|
[16] |
李磊, 陶卓民, 陆林, 等. 贵州省避暑旅游流网络结构特征及其影响因素. 地理研究, 2021, 40(11): 3208-3224.
[
|
[17] |
赵琴, 刘宏盈. 基于旅游数字足迹的夜间旅游流网络结构研究: 以重庆市为例. 地域研究与开发, 2022, 41(6): 105-110.
[
|
[18] |
王娟, 孟凤娇, 封洁洁. 基于用户生成内容的成渝城市群旅游客流网络结构演化及机理研究. 地域研究与开发, 2022, 41(1): 85-90.
[
|
[19] |
[
|
[20] |
曹辉, 蒋伟萱, 陈江龙, 等. 南京市城乡交错带多维识别与特征分析. 自然资源学报, 2023, 38(3): 795-807.
[
|
[21] |
李艳, 夏增刚, 陈爱玲. 基于多尺度组合的旅游客流预测方法. 统计与决策, 2020, 36(22): 177-180.
[
|
[22] |
雷可为, 陈瑛. 基于BP神经网络和ARIMA组合模型的中国入境游客量预测. 旅游学刊, 2007, 22(4): 20-25.
[
|
[23] |
叶燕霞. 基于LSTM和ARIMA的组合模型对入境游客人次的预测. 旅游研究, 2018, 10(6): 29-40.
[
|
[24] |
张军谋. 甘肃省入境客流量预测模型构建研究. 旅游学刊, 2010, 25(11): 33-38.
[
|
[25] |
王永明, 王美霞, 吴殿廷, 等. 基于ZINB模型的中国省域间入境旅游流影响因素. 经济地理, 2018, 38(11): 234-240.
[
|
[26] |
刘培学, 陆佑海, 张金悦, 等. 目的地区域内旅游线路模式及客流影响因素研究. 旅游学刊, 2022, 37(6): 14-26.
[
|
[27] |
谢谦, 陆明, 谢春山. 基于LBS和深度学习的旅游景区客流量的高时频预测. 地球信息科学学报, 2023, 25(2): 298-310.
[
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
周泽鲲, 乌铁红. 公诸同好未可知?推拉理论下的户外旅游动机研究. 干旱区资源与环境, 2017, 31(12): 189-195.
[
|
[33] |
周成, 冯学钢. 基于“推—拉”理论的旅游业季节性影响因素研究. 经济问题探索, 2015, (10): 33-40.
[
|
[34] |
邓粒子, 保继刚. 中国避暑型与避寒型宜人气候的分布特征及差异. 地理研究, 2020, 39(1): 41-52.
[
|
[35] |
侯亚红, 息涛, 徐方姝, 等. 辽宁避暑旅游气候条件分析和气象指数研究. 气象与环境科学, 2018, 41(4): 34-40.
[
|
[36] |
杨钊, 刘永婷, 秦金芳, 等. 长三角游乐型主题公园客流时空分布特征及其影响因素分析: 以上海欢乐谷、常州恐龙园、芜湖方特为例. 自然资源学报, 2021, 36(3): 722-736.
[
|
[37] |
熊宝玉. 住宅建筑全生命周期碳排放量测算研究. 深圳: 深圳大学, 2015.
[
|
[38] |
马丽君, 孙根年, 谢越法, 等. 50年来东部典型城市旅游气候舒适度变化分析. 资源科学, 2010, 32(10): 1963-1970.
[
|
[39] |
姜会飞, 温德永, 李楠, 等. 利用正弦分段法模拟气温日变化. 气象与减灾研究, 2010, 33(3): 61-65.
[
|
[40] |
|
[41] |
杜晨秋, 喻伟, 李百战, 等. 重庆住宅人员空调使用行为特点及评价. 建筑科学, 2020, 36(10): 12-19.
[
|
/
〈 |
|
〉 |