Regular Articles

Research progress in ecosystem management strategies based on ecosystem services trade-offs

  • SU Bo-ru , 1, 2 ,
  • LIU Mou-cheng , 1
Expand
  • 1. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2023-02-06

  Revised date: 2023-04-10

  Online published: 2023-07-17

Abstract

Ecosystem services are the bridge between social system and ecosystem. It is an important prerequisite for sustainable ecosystem management to formulate ecosystem management strategies based on the ecosystem services trade-offs. This study aims to provide a comprehensive summary of ecosystem management strategies based on ecosystem services trade-offs and to propose potential solutions to the deficiencies of existing management strategies. Based on the classification system of demand-demand trade-offs, supply-demand trade-offs and supply-supply trade-offs, this study systematically reviewed the ecosystem management strategies based on ecosystem service trade-offs at home and abroad, and innovatively proposed an ecosystem management framework coupled with three types of trade-offs. The research results show that the essence of the demand-demand trade-offs management strategy is the prioritization of ecosystem services. Supply-demand trade-off mainly changes the supply and demand of ecosystem services by regulating the driving forces of supply-demand trade-off, and the supply-supply trade-off is mainly managed by zoning according to the tradeoff characteristics, or regulating the driving forces of trade-off to increase the supply of ES or relieve the trade-off strength. The research shows that: (1) The goal of ecosystem management is to alleviate the strength of supply-demand trade-offs and achieve the two management requirements of "efficiency" and "fairness". That is, to ease the strength of the supply-demand trade-offs and simultaneously ease the supply-supply trade-offs and the demand-demand trade-offs. Currently, most management strategies are designed to alleviate one ecosystem services trade-offs in isolation and lack an ecosystem management framework coupling the three ecosystem service trade-offs. (2) Prioritizing mitigation in the supply-demand trade-off intensity of ecosystem services with higher subjective and objective importance can simultaneously alleviate the demand-demand trade-off. Comprehensively regulating the driving forces of supply and demand trade-offs and supply trade-offs can simultaneously alleviate the strength of supply-demand trade-offs and supply-supply trade-offs. Finally, the coupling of the three trade-offs is achieved.

Cite this article

SU Bo-ru , LIU Mou-cheng . Research progress in ecosystem management strategies based on ecosystem services trade-offs[J]. JOURNAL OF NATURAL RESOURCES, 2023 , 38(7) : 1848 -1862 . DOI: 10.31497/zrzyxb.20230714

生态系统服务(Ecosystem Service,ES)的定义为生态系统给人类带来的惠益[1],ES作为社会—生态系统连接桥梁[2],对于维持区域可持续发展具有重要意义。随着人口增长、资源消耗,生态系统提供ES的能力愈发下降,生态系统管理是确保生态系统能够可持续地为人类提供ES的关键。
充分认知ES权衡是实现生态系统有效管理的重要前提[3]。ES权衡最早为供给层面的权衡,可分为时间权衡、空间权衡和可逆权衡[4]。空间权衡为某一区域ES供应的增加引起了另一区域ES供应的减少,时间权衡为现阶段ES供给对未来ES供给的影响,可逆权衡指特定ES受到干扰后恢复至初始供应状态的能力。随后,Mouchet等[5]将ES权衡从供给层面延伸到了需求层面,将ES权衡分为“供给—需求权衡”“需求—需求权衡”和“供给—供给权衡”。“供给—需求权衡”为ES供给与需求的错配,“错配”的实质为ES供给量与需求量的数量差异,在相关研究中,这一语义通常用“shortfall”[6]、“risk”[7]、“deficit”[8]、“mismatch”[9]等方式表达,供给—需求权衡强度通常用ES供需比(SDR)等描述[8];“需求—需求权衡”为不同利益相关者间引起的ES需求冲突,例如农民与其他群体在供水服务上的冲突[10];“供给—供给权衡”为一种ES供给量的提高会导致另一种ES供给量降低,目前关于该类权衡的研究最为详尽,众多研究者探讨了其识别方法[11]、时空异质性[12]、时空尺度性[13]和驱动机制[14]等客观规律。
现如今,如何根据ES权衡客观规律制定管理策略是生态系统管理研究中的热点问题。为使得生态系统可持续供应ES,实现生态系统给人类带来福祉的最大化,众多研究者从两方面出发,一是探讨三种ES权衡的客观规律,例如ES权衡的时空异质性[15]、时空尺度效应[16]、驱动机制[14]和识别方法[17]等;二是探讨ES权衡的管理策略,根据ES间权衡客观规律对生态系统提出管理意见。
然而现阶段对管理策略的关注较少,管理策略能否满足管理目标仍不清晰,亟需对管理策略进行全面的总结,并针对现有管理策略的不足提出解决方法。鉴于此,本文按照需求—需求权衡、供给—需求权衡和供给—供给权衡全面总结了现有生态系统管理策略,根据生态系统管理目标指出了管理策略的不足,最后在现有管理策略的基础上,提出了耦合三种权衡类型的生态系统管理框架,研究结果以期为今后基于ES权衡的生态系统管理提供潜在解决方案。

1 基于ES权衡的生态系统管理策略

ES需求—需求权衡管理策略主要为优先级排序,研究者构建ES评价准则体系,筛选各利益相关方需求冲突最小的ES进行管理,从而缓解需求—需求权衡。ES供给—需求权衡管理策略主要为供需权衡驱动力调控策略,研究者通过调控供需权衡驱动力来增强供给或减少需求,从而缓解供给—需求权衡强度。ES供给—供给权衡管理策略分为两类,一是分区管理策略,研究者根据ES供给—供给权衡的空间异质性进行分区,并根据不同分区提出差异性管理方式;二是供给权衡驱动力调控策略,研究者建立权衡强度、权衡方向对驱动力的响应函数,从而提出定量化管理措施。

1.1 ES需求—需求权衡管理策略

1.1.1 理论基础

生态系统管理政策若不公平地考虑各利益相关方的ES需求则会造成潜在冲突[18,19]。ES需求—需求权衡(简称“ES需求间权衡”)的管理目标是尽可能公平地满足各利益相关方的ES偏好,决策者需要利用有限的资源满足群体偏好程度最大的ES[20]。如黄土高原燕沟流域的区域功能定位是保持水土和粮食生产,因此该区域的土地利用规划应首先考虑增加林地面积和农地面积以提高土壤保持服务和粮食生产服务[21]
因此需求间权衡管理策略的思路是ES优先级排序,利用有限的资源满足大多数利益相关者的ES偏好。管理策略的理论基础是利益相关者对ES的感知理论[22],不同利益相关方因自身职业、文化程度、经济状况等因素,对特定ES有着不同的偏好程度[20],根据各利益相关方的偏好程度差异,对ES进行重要性排序,找到代表大多数利益相关者偏好的ES,从而减少各利益相关方ES偏好满足程度的差异。

1.1.2 ES优先级排序

当资源有限时,优先级判断是管理的核心[23],多准则决策(MCDA)是通过判断优先级以缓解各类冲突从而达成妥协的高效决策方式。由于研究对象与研究背景的差异,不同研究中MCDA步骤也不一样,但基本可归纳为以下五步:(1)问题确定;(2)开发备选方案;(3)评价准则体系构建;(4)指标确定;(5)备选方案得分排序(表1)。“评价准则体系”构建是MCDA的关键,该准则体系必须满足以下两个原则:一是综合各利益相关方对生态系统服务的偏好,二是对不同生态系统服务进行重要性排序或合理赋权。因此评价准则体系构建分为两个内容:一是准则确定,二是准则权重确定。
表1 MCDA步骤

Table 1 MCDA procedure

问题确定 开发备选
方案
评价准则体系构建 评价指标确定 备选方案
排序
参考文献
准则确定 准则权重确定
生态脆弱
性评价
三种土地
利用类型
依据管理目标 熵权法 高程、坡度等 得分排序 陈理庭等[24]
土地利用
规划
三种土地
利用类型
利益相关方讨论 Langemeyer等[25]
水资源管理 21个子流域 网络问卷调查 网络问卷调查 得分排序 Liu等[26]
土地利用
规划
三种土地
利用类型
专家小组讨论 专家小组讨论 有效物种丰富度、碳固存量等 得分排序 Fontana等[27]
土地利用
规划
四种土地
利用类型
半结构化访谈 肉类产品净利润、牧草物种多样性、牧草遗传多样性等 得分排序 Favretto等[28]
泥炭地可
持续管理
五种泥炭地开发情景 利益相关者讨论 利益相关者讨论 泥碳开采量等 得分排序 Saarikoski等[29]
森林生态
系统管理
不同的伐
木方案
利益相关者讨论 自然服务、生物多样性等 Saarikoski等[30]
区域发展
规划
三种发展
方案
半结构化访谈 核心保护区面积、固体废物管理等 得分排序 Oikonomou等[31]
森林生态
系统管理
三种管理
方案
依据管理目标 森林固碳量、鸟类居住可能性 得分排序 Schwenk等[32]
准则确定即为明确各利益相关方ES需求的过程,主要通过研讨或参与式调查等方法确定评价准则,调查对象也多为专家小组、政府部门代表、土地所有者等利益相关方[27,29]。在选择利益相关方时,可以按照一定的分类方式选取,以避免利益相关方的遗漏,如Githiora-Murimi等[33]按照社会背景分类选取教师、渔民、农民、商人和政府官员等作为利益相关方;Quintas-Sariano等[34]按照个人信息分类选取年龄、学历、性别等作为利益相关方;Saarikoski等[29]通过影响—兴趣矩阵法将利益相关者分为四类,并选取高影响—高兴趣和低影响—高兴趣人群参与准则确定。
准则权重确定即为ES重要性排序的过程,对重要程度高的ES赋更高的权重。ES重要性分为主观重要性和客观重要性,主观重要性即为“利益相关者对ES的需求程度”,客观重要性即为“社会—生态系统对ES的现实需求程度”,因此关于“重要”这层语义也有众多表达方式,如key[35]、preference[36]、importance[37]等。主观ES重要性是利益相关者的主观判断结果,可以通过人们的偏好程度来量化[38]。ES客观重要性是社会系统对ES的客观需求,可以通过ES的缺失风险来量化[38],例如位于流域下游人口密度大、基础设施密度大的城市,其洪水调控服务相较于其他调节服务具有更高的重要性[39]。客观重要性还可以通过社会发展目标来量化,例如北方重点生态功能区的主导生态功能是水土保持和沙漠化防治,因此水量供给、土壤保持和防风固沙等ES具有较高的重要性[40]。还有研究者认为ES供给的物质量与经济价值价量[41]也可作为ES客观重要性指标[42]

1.2 ES供给—需求权衡管理策略

1.2.1 理论基础

区域内较高的ES需求与较低的ES供给便导致了ES供给—需求权衡(简称“ES供需间权衡”),而改变供需权衡驱动力可改变ES供给量与需求量[43,44]。由此可知,ES供给—需求权衡管理策略的主要思路为调控ES供需权衡驱动力实现“开源节流”:“开源”即为增强ES供给,其理论基础为ES供给驱动机制;“节流”即为降低ES需求,其理论基础为ES需求的影响机制。研究者通过探讨供需权衡驱动力对ES供需格局的影响,明晰土地利用、环境因子、社会因子等对ES供给的驱动机制,以及政策、ES需求的影响机制,进而制定管理策略[44,45]
在ES供需权衡研究中,供给量主要通过InVest、SWAT等生态过程模型评估,需求量则根据不同ES类型采取不同的评估手段,如供给服务需求量则通过统计年鉴(人均粮食消费)或行业数据(木材产量)评估,调节服务或文化服务则通过人们的偏好或期望评估[38],由评估方法可知,ES供给—需求权衡研究是探讨潜在供给与实际需求或潜在需求间的权衡。

1.2.2 供需权衡驱动力调控策略

(1)增强ES供给
大量研究通过回归分析、冗余分析、机器学习、地理探测器等方法分析高程、降雨、土地利用面积、人口、城镇化率等自然因子和社会因子对ES供给的驱动强度与方向(增加或减少),然而现有研究范式将土地利用作为ES供给的替代,因此增强ES供给的方式大多为增加或减少某种土地利用面积。Wang等[46]在不同尺度上分析了供需权衡驱动力对ES供给量的影响,结果表明林地对固碳、土壤保持等均有正向影响,而建筑用地、人口数量均对这些ES供给有负面作用,森林砍伐和城市化加剧了ES供需权衡,因此提出在供需错配地区加强天然林保护并控制城市扩张;胡昂等[47]研究表明,林地面积、降水、建筑用地等自然驱动力均对成都平原水量供给、碳固存、土壤保持等ES的供需比产生了影响,因此提出需改善城市下垫面蒸散能力并建设城郊森林公园;Sun等[48]研究表明,城镇化率和耕地面积对碳固存服务以及食物供应服务的供需间权衡有较强影响,因此需控制城市的无序扩张并严守耕地红线。
(2)减少ES需求
调控供需权衡驱动力对增强ES供给的能力有限,因此减少ES需求也是缓解ES供需间权衡的重要策略。对于一些调节服务(如洪水调节)或文化服务(美学服务),人们一般通过风险评估、偏好或价值观等主观方法来评估其潜在需求,评估结果受主观因素影响较大,这类ES则无法通过降低其需求程度达到ES供需平衡;而对于一些供给服务(食物供应、产水服务)或文化服务(户外娱乐),人们可以通过使用和消费量等客观方法来衡量其实现需求,这类ES可以通过降低需求来缓解ES供给—需求权衡[38]。例如,Meng等[49]提出,在沂河流域产水服务供需压力较大的区域,需要调整水价,提高民众的节水意识,从而降低区域产水服务的需求量,缓解产水服务的供给—需求权衡;Wu等[50]分析京津冀地区ES供需格局发现,建筑用地的无序扩张导致河北平原地区、北京和天津的ES供需间权衡,因此需严格控制人口与城市规模,减少ES的需求量。
在实际情况中,单纯通过增加ES供给或减少ES需求并不能解决供需问题,需两种策略结合使用。例如Jiang等[51]分析了上海市三种土地利用情景下的ES供需格局,即使最保守的土地利用方式也难以缓解供水服务的供需间权衡,因此必须减少上海市用水需求以解决供需缺口;Chen等[6]分析了上海市土地利用类型面积比例对ES供需格局的影响,结果表明若要解决碳固存服务的供需间权衡,建筑用地面积需减少94%,绿地面积需增加466%,因此增加碳固存服务供给并不是一种行之有效的解决方案,当地政府应当减少工业CO2的排放以降低需求。
值得注意的是,在减少ES需求(增加ES供给)的同时也可能会减少ES供给(增加ES需求),如不透水表面(建筑用地)的增加可以提高供水服务,但难以弥补城市扩张和人口增加带来的用水激增[52];一些地区实行封山育林、控制人口的措施可以减少当地的用水需求,但林地、草地面积的增加也会抑制地表径流的增加从而减少供水服务[53],因此,需将提高供给措施与减少需求措施结合使用。

1.3 ES供给—供给权衡管理策略

1.3.1 理论基础

在提高某一种ES的供给水平时,会有意或无意间造成另一种服务供给水平降低[54],这是因为存在ES供给—供给权衡(简称“ES供给间权衡”)。ES供给间权衡不仅会降低ES总供给量,还会降低ES供给效率,从而影响生态系统管理的效果。因此,ES供给间权衡最理想的管理状态是实现高水平的ES供给或低水平的权衡程度[55]
ES供给间权衡管理策略分为两类,一是分区管理策略,二是驱动力调控策略。分区管理策略的理论基础是ES供给间权衡的空间异质性,由于自然环境条件和社会经济条件存在巨大的空间差异,使得ES供给间权衡方向及其强度产生了空间异质性[56];驱动力调控策略的理论基础是ES供给间权衡的驱动机制。

1.3.2 分区管理策略

了解ES供给间权衡的空间差异对于生态系统管理至关重要,若对具有多种ES关系的区域进行同质化管理,则并不能达到最理想的管理状态,因此需对研究区域进行分区,利用不同区域内不同对ES供给间权衡的特点,因地制宜提出针对性管理策略[57]
有研究者根据ES供给间权衡方向进行了分区,如Qian等[58]根据祁连山地区保水服务与畜牧生产服务间关系提出了区域差异化管理策略,在两者为负协同关系的区域实行禁牧措施,在两者为权衡关系区域实行轮牧措施,在两者为正协同关系区域实行保持放牧措施;Mashizi等[59]在Bagadm盆地内发现在高海拔上ES簇关系为正协同,在中海拔上ES簇关系为权衡,在低海拔上ES簇关系为负协同,并对高、中、低海拔区域提出了三种不同的发展策略。还有研究者按照ES供给间权衡强度进行了分区,如王世豪等[60]描绘了粤港澳大湾区的供给服务与水源涵养服务权衡程度的空间格局,结果显示该地区东北部和南部地区权衡强度较大,这些区域需要放慢发展速度,减少城镇化和不合理的人类活动对ES供给的影响。
这两种分区方式较为普遍,但是在分区过程中并没有考虑ES供给量的区域差异,这使得研究者在制定管理策略时可能会单纯关注如何降低权衡强度而忽略了ES供给量,最终使得管理结果可能并不能达成高供给—低权衡这种最佳管理状态,因此,有研究者将ES供给量纳入分区指标中。如Dai等[61]依据ES供给水平和权衡程度将赣江流域的101个子流域划分成四个类团,对整体效益最高(高供给、低权衡)的类团采取优先保护措施,对于整体效益较低(低供给、高权衡)的类团优先提高调节服务以改善绿化景观。

1.3.3 供给权衡驱动力调控策略

ES供给权衡驱动力分为自然驱动力和社会驱动力,目前,大多数研究通过,并探讨其驱动机理。最早为Benneet等[14]提出的两种驱动机制,一是公共驱动力驱动两ES供给水平,二是一种ES的供给水平会影响另一种ES的驱动水平。Xu等[62]和Zhang等[63]在此基础上进行了延伸,前者认为土地利用的一致性会导致ES供给间协同,而土地利用的冲突性会导致ES供给间权衡;后者的研究表明,在一定范围内,支持性土地利用面积与冲突性土地利用面积的比例以及各自对ES的支持程度,会导致ES供给间权衡或协同的发生。
根据ES供给间权衡驱动机制,众多研究者构建通过对应分析、冗余分析和机器学习等方法识别了ES供给间权衡驱动力[50],探析驱动力与权衡间的定性关系,并提出了一些列管理措施。如Biel等[64]研究表明,海岸地貌既能促进海岸防护,又能帮助千鸟繁殖,即海岸地貌是两ES间协同关系的公共驱动力,因此可通过种植滩草实现两者的双赢;Yang等[65]研究表明快速城镇化背景下,土地利用对产水服务与固碳服务间权衡的影响逐渐减小,降雨等不确定因子对权衡的影响逐渐增大,因此需要通过城市绿地化或海绵城市建设等方式缓解降雨对ES的负面影响;Qiu等[66]对陕西省三个气候带内土壤保持服务与食物供应服务的研究表明,施肥管理、人口密度等社会因子是供给间权衡的主要驱动力,而温度、降雨、地形等自然因子对权衡的影响有限;Zeng等[67]对水质净化与固碳服务的权衡分析表明,在长三角地区东西部,建筑用地面积与年均气温变化对两者的供给间权衡强度有负向影响。
上述研究普遍考虑了供给间权衡的空间异质性,提出的管理措施也大多为定性表达,但囿于供给间权衡的空间差异,其对供给权衡驱动力的分析大多基于地理加权回归。还有研究者通过全局性回归等方法,建立了供给间权衡与驱动力的响应函数,探讨了驱动力对权衡强度、权衡方向、权衡阈值等的影响,此类研究能帮助决策者提出更精细的土地利用配置与政策建议。例如,Feng等[68]在安塞流域的研究表明,草地会减弱碳固存与产水服务间的权衡而林地会增加他们的权衡,因此在权衡强度较强的区域应限制林地面积而增加草地面积;Feng等[69]确定了土地利用类型比例对ES供给间权衡的影响阈值,提出了精确的土地利用转移比例;Xu等[70]研究发现人口密度、夜间灯光和GDP对产水服务权衡强度的影响具有阈值效应,在人口密度超100 人/km2的地区水分供给服务的权衡强度会急剧增大,因此在此类地区需进行水资源管理。

2 基于关键ES的生态系统管理框架

2.1 耦合三种ES权衡类型的逻辑基础

生态系统管理的本质是使生态系统能可持续地向人类提供ES以满足人们的需求,即缓解供需间权衡强度,生态系统管理的最终目标是尽可能公平地满足各利益相关者的ES需求[20]。本文认为这一管理目标包含两层要求,一是“尽可能满足ES需求”,在缓解供需间权衡强度的同时尽可能提高生态系统ES供给总量,即“效率性”要求;二是“公平地满足ES需求”,在缓解供需间权衡强度的同时尽可能使各利益相关者的ES需求满足程度相对公平,即“公平性”要求。通过以上分析可以合理推断在缓解ES供需间权衡时需同时缓解的ES供给间权衡和ES需求间权衡,从而满足生态系统管理目标的“效率性”与“公平性”两个要求(图1)。现如今面向供需间权衡管理策略研究大多只针对ES供需时空错配问题,忽略了对ES供给间权衡与需求间权衡的管理。
图1 耦合三种ES权衡的逻辑基础

Fig. 1 The logical basis for coupling the three ES trade-offs

鉴于此,本文在三种ES权衡现有管理策略的基础上,构建了“基于关键ES的生态系统管理框架”,并在框架中嵌入“关键ES识别工具包”耦合供需间权衡与需求间权衡,嵌入“驱动力调控工具包”耦合供需间权衡与供给间权衡,最终实现在缓解供需间权衡强度的时候兼顾缓解需求间权衡与供给间权衡(图1)。

2.2 基于关键ES的生态系统管理框架

2.2.1 关键ES识别工具包

关键ES识别工具包旨在耦合供需间权衡与需求间权衡。ES主客观重要性越高表明其代表着越多利益相关方的ES偏好,缓解需求间权衡的思路是利用有限的资源优先满足主客观重要性较高的ES[22]。因此在缓解供需间权衡强度的过程中若能提高群体偏好程度较高的ES供给则可以同步缓解需求间权衡,准确识别此类ES是耦合供需间权衡与需求间权衡的重点。
本文按“供需比(SDR)”与“ES主客观重要性(P)”两种属性将ES分为四类,将存在供需间权衡且主客观重要性较高的ES定义为关键ES,存在供需间权衡且主客观重要性较低的ES定义为非关键ES(图2)。
图2 关键ES识别工具包

注:供需比<1的ES存在供需间权衡,供需比>1的ES不存在供需间权衡,若ES主客观重要性高于中位数(P0.5),则认为其能代表大部分利益相关者ES偏好,图中产水服务、粮食生产服务为关键ES,气候调节服务、土壤保持服务为非关键ES,固碳服务、NPP和生物多样性保护不存在供需间权衡,因此不作为管理对象。

Fig. 2 Key ES identification toolkit

2.2.2 驱动力综合调控工具包

驱动力综合调控工具包旨在耦合供需间权衡与供给间权衡。ES供需权衡驱动力(x)与供给权衡驱动力(y)间存在关联[71,72]x可影响ES供给量,y通过影响ES供给量来影响权衡程度。某些情况下xy是重合的,即调控x的同时可能会引起其他ES的供给间权衡(图3),xESb的供需权衡驱动力,但同时也是ESaESb的供给权衡驱动力,在调控x以缓解ESb供需权衡的同时,则会加剧ESaESb的供给间权衡。而部分xy并无关联,我们称其为独立的供需权衡驱动力x',如图3x'在提高ESb供给的同时并不会对ESa的供给造成影响。因此,综合调控xyx'能为同时缓解供需间权衡强度与供给间权衡提供潜在路径。
图3 供需间权衡与供给间权衡耦合机制

Fig. 3 Supply-demand trade-offs and supply-supply trade-offs coupling mechanism

由此可知,同时缓解供需间权衡强度与供给间权衡有两种方式,一是将权衡关系转变为协同关系,即激励协同驱动力z;二是激励受损ES的独立供需权衡驱动力x'。对于关键ES—关键ES权衡中,可通过以上两种方式尝试提高两ES供给量;对于非关键ES—关键ES权衡,除上述两种方式外,还可以适当激励权衡驱动力y,但要保证非关键ES减少量在可接受范围内(图4)。
图4 驱动力综合调控工具包

Fig. 4 Toolkit for comprehensive regulation of driving forces

2.2.3 管理框架步骤

作者提出了一个耦合ES供需间权衡、供给间权衡和需求间权衡的生态系统管理框架(图5)。首先,评估ES供给量与需求量,评估ES主客观重要性,通过“关键ES识别工具包”,筛选关键ES与非关键ES;其次,进行ES权衡分析,识别供需权衡驱动力x,供给权衡驱动力y,与独立的供需权衡驱动力,分别建立ES供需间权衡与x和供给间权衡与y的响应函数;最后,识别独立的供需权衡驱动力x',识别ES核心冲突,通过“驱动力综合调控工具包”建立生态系统管理方案。具体步骤如下:
图5 基于关键ES的生态系统管理框架

Fig. 5 Framework for ecosystem management based on key ES

(1)关键ES识别
首先通过研讨、参与式访谈等方法汇总各利益相关方关注的ES,运用InVest等生态过程模型评估各ES供给量(SES),通过ES的实际使用量、消费量评估各ES的需求量(DES),得到ES供需比(SDR)。通过参与式访谈评估ES主观重要性,通过专家访谈评估ES客观重要性,最终得到ES主客观综合重要性(P)。根据“关键ES识别工具包”识别关键ES与非关键ES。
(2)ES权衡分析
通过均方根误差评估ES供给间权衡强度(R),运用地理探测器、冗余分析和对应分析等确定供需权衡驱动力x、供给权衡驱动力y和协同驱动力z。通过回归分析建立每一对ES的供给权衡强度—供给权衡驱动力响应函数 R = f ( y , z ),确定供给权衡阈值。建立每一个ES的供需比—供需权衡驱动力响应函数 S E S = f ( x )
(3)生态系统管理方案制定
判断独立的供需权衡驱动力x',关键ES—关键ES权衡中,两关键ES均需要提高供给量;关键ES—非关键ES权衡中,可优先提高关键ES的供给量,但要保证非关键ES的减少量在可接受范围内。基于以上原则,通过“驱动力综合调控工具包”,根据供给权衡阈值和区域发展规划等信息建立不同ES冲突类型的生态系统管理方案。

3 结论与展望

本文按照需求间权衡、供需间权衡和供给间权衡分类体系,系统梳理了基于ES权衡的生态系统管理策略,并针对现有管理策略的不足提出了基于关键ES的生态系统管理框架。研究表明现如今生态系统系统管理策略大多单一的缓解ES权衡,难以满足生态系统管理的两个要求,本文构建的生态系统管理框架通过“关键ES识别工具包”满足“公平性”管理要求,“驱动力综合调控工具包”满足“效率性”管理要求。研究结果为基于ES权衡的生态系统管理提供了潜在解决方案。
值得注意的是,未来基于ES权衡的生态系统管理策略研究中仍有以下两个方面亟需重点研究。
(1)构建多尺度下的生态系统管理框架。三种ES间权衡具有尺度依赖性,不同时空尺度下供给间权衡的方向[73]、强度[74]与阈值[75]等均会发生改变;不同时空尺度下利益相关者偏好冲突也不同,区域尺度的利益相关者可能更关注食物供应、美学服务等ES,而全球尺度的利益相关者可能更关注气候调节、水源涵养等ES[76];同时,不同时空尺度ES供需比格局也不相同[77,78]。当前,基于ES权衡的生态系统管理策略仍大多集中在单一尺度下,单一尺度下的ES权衡信息无法为面向多种尺度的决策者提供帮助,未来应建立面向不同时空尺度的管理框架。
(2)探讨供给间权衡驱动机制的生态学机理,构建基于供给间权衡驱动机制的土地利用规划模型。现有诸如多目标规划、非线性规划、马尔科夫模型等土地利用规划模型将ES供给间权衡关系简化为土地利用面积冲突,例如有研究者将供给服务、调节服务、支持服务和文化服务四种服务的权衡关系用9种土地利用面积冲突表征[79];NPP、食物供应、产水服务和土壤保持服务四种ES的权衡关系用林地、农田、草地三种土地利用面积冲突表征[80]。这一简化的前提假设是ES供给与土地利用面积和土地利用格局间存在线性关系,然而现实情况中ES供给与两者间关系复杂[81],因此供给间权衡属性(阈值、方向、强度等)也随着土地利用面积与土地利用格局的变化而变化,这导致现有土地利用规划模型对ES权衡的简化处理并不能准确刻画ES间权衡规律。本文尝试通过权衡阈值、区域规划等信息综合调控权衡驱动力以提高ES供给效率,但最终得出的生态系统管理方案(土地利用方案)可能并不是最优,因此未来应加强ES权衡驱动机制的生态学机理解释,将ES权衡驱动机制嵌入土地利用规划模型,从而帮助最终的生态系统管理方案达到最优。
[1]
MEA (Millennium Ecosystem Assessment). Ecosystems and Human Well-being: Desertification Synthesis. Washington, DC: Island Press, 2005.

[2]
FU B J, WANG S, SU C H, et al. Linking ecosystem processes and ecosystem services. Current Opinion in Environmental Sustainability, 2013, 5: 4-10.

DOI

[3]
郑华, 李屹峰, 欧阳志云, 等. 生态系统服务功能管理研究进展. 生态学报, 2013, 33(3): 702-710.

[ZHENG H, LI Y F, OUYANG Z Y, et al. Progress and perspectives of ecosystem services management. Acta Ecologica Sinica, 2013, 33(3): 702-710.]

DOI

[4]
RODRÍGUEZ J P, BEARD JR T D, BENNETT E M, et al. Trade-offs across space, time, and ecosystem services. Ecology and Society, 2006, 11(1): art28, Doi: 10.5751/ES-01667-110128.

[5]
MOUCHET M A, LAMARQUE P, MARTÍN-LÓPEZ B, et al. An interdisciplinary methodological guide for quantifying associations between ecosystem services. Global Environmental Change, 2014, 28: 298-308.

DOI

[6]
CHEN J Y, JIANG B, BAI Y, et al. Quantifying ecosystem services supply and demand shortfalls and mismatches for management optimization. Science of the Total Environment, 2019, 650: 1426-1439.

DOI

[7]
ZHANG H J, FENG J, ZHANG Z C, et al. Regional spatial management based on supply-demand risk of ecosystem services: A case study of the Fenghe River Watershed. International Journal of Environmental Research and Public Health, 2020, 17: 4112, https://doi.org/10.3390/ijerph17114112.

DOI

[8]
FU X X, WANG X F, ZHOU J T, et al. Optimizing the production-living-ecological space for reducing the ecosystem services deficit. Land, 2021, 10: 1001, https://doi.org/10.3390/land10101001.

DOI

[9]
ZHOU Y F, LI J G, PU L J. Quantifying ecosystem service mismatches for land use planning: Spatial-temporal characteristics and novel approach: A case study in Jiangsu province, China. Environmental Science Pollution Research, 2022, 29: 26483-26497, https://doi.org/10.1007/s11356-021-17764-0.

DOI

[10]
KING E, CAVENDER-BARES J, BALVANERA P, et al. Trade-offs in ecosystem services and varying stakeholder preferences: Evaluating conflicts, obstacles, and opportunities. Ecology and Society, 2015, 20(3): 25, http://dx.doi.org/10.5751/ES-07822-200325.

[11]
李双成, 张才玉, 刘金龙, 等. 生态系统服务权衡与协同研究进展及地理学研究议题. 地理研究, 2013, 32(8): 1379-1390.

[LI S C, ZHANG C Y, LIU J L, et al. The tradeoffs and synergies of ecosystem services: Research progress, development trend, and themes of geography. Geographical Research, 2013, 32(8): 1379-1390.]

[12]
WANG Y H, DAI E F. Spatial-temporal changes in ecosystem services and the trade-off relationship in mountain regions: A case study of Hengduan Mountain Region in Southwest China. Journal of Cleaner Production, 2020, 264: 121573, https://doi.org/10.1016/j.jclepro.2020.121573.

DOI

[13]
SU C H, DONG M, FU B J, et al. Scale effects of sediment retention, water yield, and net primary production: A case study of the Chinese Loess Plateau. Land Degradation & Development, 2020, 31: 1408-1421.

DOI

[14]
BENNETT E M, PETERSON G D, GORDON L J. Understanding relationships among multiple ecosystem services: Relationships among multiple ecosystem services. Ecology Letters, 2009, 12: 1394-1404.

DOI PMID

[15]
刘春芳, 王韦婷, 刘立程, 等. 西北地区县域生态系统服务的供需匹配: 以甘肃古浪县为例. 自然资源学报, 2020, 35(9): 2177-2190.

DOI

[LIU C F, WANG W T, LIU L C, et al. Supply-demand matching of county ecosystem services in Northwest China: A case study of Gulang county. Journal of Natural Resources, 2020, 35(9): 2177-2190.]

DOI

[16]
ZHANG J J, ZHU W B, ZHU L, et al. Multi-scale analysis of trade-off/synergistic effects of forest ecosystem services in the Funiu Mountain Region, China. Journal of Geographical Sciences, 2022, 32(5): 981-999.

DOI

[17]
OBIANG NDONG G, THEROND O, COUSIN I. Analysis of relationships between ecosystem services: A generic classification and review of the literature. Ecosystem Services, 2020, 43: 101120, https://doi.org/10.1016/j.ecoser.2020.101120.

DOI

[18]
MARTÍN-LÓPEZ B, INIESTA-ARANDIA I, GARCÍA-LLORENTE M, et al. Uncovering ecosystem service bundles through social preferences. PLoS One, 2012, 7(6): e38970, Doi: 10.1371/journal.pone.0038970.

DOI

[19]
LAU J D, HICKS C C, GURNEY G G, et al. Disaggregating ecosystem service values and priorities by wealth, age, and education. Ecosystem Services, 2018, 29: 91-98.

DOI

[20]
HICKS C C, GRAHAM N A J, CINNER J E. Synergies and tradeoffs in how managers, scientists, and fishers value coral reef ecosystem services. Global Environmental Change, 2013, 23: 1444-1453.

DOI

[21]
HU H T, FU B J, LYU Y H, et al. SAORES: A spatially explicit assessment and optimization tool for regional ecosystem services. Landscape Ecology, 2015, 30: 547-560.

DOI

[22]
REILLY K, ADAMOWSKI J, KIMBERLY J. Participatory mapping of ecosystem services to understand stakeholders' perceptions of the future of the Mactaquac Dam, Canada. Ecosystem Service, 2018, 30: 107-123.

DOI

[23]
WILSON K A, CARWARDINE J, POSSINGHAM H P. Setting conservation priorities. Annals of the New York Academy of Sciences, 2009, 1162: 237-264, Doi:10.1111/j.1749-6632.2009.04149.x.

DOI

[24]
陈理庭, 蔡海生, 张婷, 等. 基于多准则决策的万年县生态脆弱性研究. 西南农业学报, 2022, 35(1): 226-234.

[CHEN L T, CAI H S, ZHANG T, et al. Ecological vulnerability of Wannian county based on multi-criteria decision making. Southwest China Journal of Agricultural Sciences, 2022, 35(1): 226-234.]

[25]
LANGEMEYER J, GÓMEZ-BAGGETHUN E, HAASE D, et al. Bridging the gap between ecosystem service assessments and land-use planning through Multi-Criteria Decision Analysis (MCDA). Environmental Science & Policy, 2016, 62: 45-56.

[26]
LIU S, CROSSMAN N D, NOLAN M, et al. Bringing ecosystem services into integrated water resources management. Journal of Environmental Management, 2013, 129: 92-102.

DOI PMID

[27]
FONTANA V, RADTKE A, BOSSI FEDRIGOTTI V, et al. Comparing land-use alternatives: Using the ecosystem services concept to define a multi-criteria decision analysis. Ecological Economics, 2013, 93: 128-136.

DOI

[28]
FAVRETTO N, STRINGER L C, DOUGILL A J, et al. Multi-criteria decision analysis to identify dryland ecosystem service trade-offs under different rangeland land uses. Ecosystem Services, 2016, 17: 142-151.

DOI

[29]
SAARIKOSKI H, MUSTAJOKI J, HJERPPE T, et al. Participatory multi-criteria decision analysis in valuing peatland ecosystem services: Trade-offs related to peat extraction vs. pristine peatlands in Southern Finland. Ecological Economics, 2019, 162: 17-28.

DOI

[30]
SAARIKOSKI H, MUSTAJOKI J, BARTON D N, et al. Multi-Criteria decision analysis and Cost-Benefit analysis: Comparing alternative frameworks for integrated valuation of ecosystem services. Ecosystem Services, 2016, 22: 238-249.

DOI

[31]
OIKONOMOU V, DIMITRAKOPOULOS P G, TROUMBIS A Y. Incorporating ecosystem function concept in environmental planning and decision making by means of multi-criteria evaluation: The case study of Kalloni, Lesbos, Greece. Environmental Management, 2011, 47: 77-92.

DOI

[32]
SCHWENK W S, DONOVAN T M, KEETON W S, et al. Carbon storage, timber production, and biodiversity: Comparing ecosystem services with multi-criteria decision analysis. Ecological Application, 2012, 22(5): 1612-1627.

DOI

[33]
GITHIORA-MURIMI Y W, OWUOR M A, ABILA R, et al. Integrating stakeholder preferences into ecosystem services mapping in Yala wetland, Kenya. Ecosystems and People, 2022, 18: 146-163.

DOI

[34]
QUINTAS-SORIANO C, BRANDT J S, RUNNING K, et al. Social-ecological systems influence ecosystem service perception: A programme on Ecosystem Change and Society (PECS) analysis. Ecology and Society, 2018, 23(3): 3, https://doi.org/10.5751/ES-10226-230303.

[35]
MITCHELL M G E, SCHUSTER R, JACOB A L, et al. Identifying key ecosystem service providing areas to inform national-scale conservation planning. Environmental Research Letter, 2021, 16: 014038, https://doi.org/10.1088/1748-9326/abc121.

DOI

[36]
CZAJKOWSKI M, BARTCZAK A, GIERGICZNY M, et al. Providing preference-based support for forest ecosystem service management. Forest Policy and Economics, 2014, 39: 1-12.

DOI

[37]
DOU Y H, ZHEN L, DE GROOT R, et al. Assessing the importance of cultural ecosystem services in urban areas of Beijing municipality. Ecosystem Services, 2017, 24: 79-90.

DOI

[38]
WOLFF S, SCHULP C J E, VERBURG P H. Mapping ecosystem services demand: A review of current research and future perspectives. Ecological Indicators, 2015, 55: 159-171.

DOI

[39]
NEDKOV S, BURKHARD B. Flood regulating ecosystem services: Mapping supply and demand, in the Etropole municipality, Bulgaria. Ecological Indicators, 2012, 21: 67-79.

DOI

[40]
祝萍, 刘鑫, 郑瑜晗, 等. 北方重点生态功能区生态系统服务权衡与协同. 生态学报, 2020, 40(23): 8694-8706.

[ZHU P, LIU X, ZHENG Y H, et al. Tradeoffs and synergies of ecosystem services in key ecological function zones in Northern China. Acta Ecologica Sinica, 2020, 40(23): 8694-8706.]

[41]
XIE G D, ZHANG C X, ZHEN L, et al. Dynamic changes in the value of China's ecosystem services. Ecosystem Services, 2017, 26: 146-154.

DOI

[42]
张碧天, 闵庆文, 焦雯珺, 等. 生态系统服务权衡研究进展. 生态学报, 2021, 41(14): 5517-5532.

[ZHANG B T, MIN Q W, JIAO W J, et al. Research progress and perspective on ecosystem services trade-offs. Acta Ecologica Sinica, 2021, 41(14): 5517-5532.]

[43]
BREEZE T D, VAISSIÈRE B E, BOMMARCO R, et al. Agricultural policies exacerbate honeybee pollination service supply-demand Mismatches across Europe. PLoS One, 2014, 9: e82996, Doi: 10.1371/journal.pone.0082996.

DOI

[44]
翟天林, 王静, 金志丰, 等. 长江经济带生态系统服务供需格局变化与关联性分析. 生态学报, 2019, 39(15): 5414-5424.

[ZHAI T L, WANG J, JIN Z F, et al. Change and correlation analysis of the supply-demand pattern of ecosystem services in the Yangtze River Economic Belt. Acta Ecologica Sinica, 2019, 39(15): 5414-5424.]

[45]
张宇硕, 吴殿廷, 吕晓. 土地利用/覆盖变化对生态系统服务的影响: 空间尺度视角的研究综述. 自然资源学报, 2020, 35(5): 1172-1189.

DOI

[ZHANG Y S, WU D T, LYU X. A review on the impact of land use/land cover change on ecosystem services from a spatial scale perspective. Journal of Natural Resources, 2020, 35(5): 1172-1189.]

DOI

[46]
WANG L J, GONG J W, MA S, et al. Ecosystem service supply-demand and socioecological drivers at different spatial scales in Zhejiang province, China. Journal of Natural Resources, 2022, 140: 109058, Doi: 10.1016/j.ecolind.2022.109058.

DOI

[47]
胡昂, 吴俣思, 黄莹, 等. 高空间异质性区域生态系统服务供需与驱动力分析: 以四川省为例. 长江流域资源与环境, 2022, 31(5): 1062-1076.

[HU A, WU Y S, HAUNG Y, et al. Analysis of supplies, demands and driving forces of ecosystem services in regions with high spatial heterogeneity: A case study of Sichuan province. Resources and Environment in the Yangtze Basin, 2022, 31(5): 1062-1076.]

[48]
SUN W, LI D H, WANG X R, et al. Exploring the scale effects, trade-offs and driving forces of the mismatch of ecosystem services. Ecological Indicators, 2019, 103: 617-629.

DOI

[49]
MENG Q X, ZHANG L K, WEI H J, et al. Linking ecosystem service supply-demand risks and regional spatial management in the Yihe River Basin, Central China. Land, 2021, 10(8): 1-27, Doi: 10.3390/land10080843.

DOI

[50]
WU X, LIU S L, ZHAO S, et al. Quantification and driving force analysis of ecosystem services supply, demand and balance in China. Science of the Total Environment, 2019, 652: 1375-1386.

DOI

[51]
JIANG B, BAI Y, CHEN J Y, et al. Land management to reconcile ecosystem services supply and demand mismatches: A case study in Shanghai municipality, China. Land Degradation Development, 2020, 31: 2684-2699.

DOI

[52]
CHEN D S, LI J, YANG X N, et al. Quantifying water provision service supply, demand and spatial flow for land use optimization: A case study in the Yanhe Watershed. Ecosystem Services, 2020, 43: 101117, https://doi.org/10.1016/j.ecoser.2020.101117.

DOI

[53]
ROHATYN S, ROTENBERG E, RAMATI E, et al. Differential impacts of land use and precipitation on "ecosystem water yield". Water Resources Research, 2018, 54: 5457-5470.

DOI

[54]
DENG X Z, LI Z H, GIBSON J. A review on trade-off analysis of ecosystem services for sustainable land-use management. Journal of Geographical Sciences, 2016, 26: 953-968.

DOI

[55]
BRADFORD J B, D'AMATO A W. Recognizing trade-offs in multi-objective land management. Frontiers in Ecology and the Environment, 2012, 10: 210-216.

DOI

[56]
VALLET A, LOCATELLI B, LEVREL H, et al. Relationships between ecosystem services: Comparing methods for assessing tradeoffs and synergies. Ecological Economics, 2018, 150: 96-106.

DOI

[57]
LI T, LYU Y H, Fu B J, et al. Bundling ecosystem services for detecting their interactions driven by large-scale vegetation restoration: Enhanced services while depressed synergies. Ecological Indicators, 2019, 99: 332-342.

DOI

[58]
QIAN D W, DU Y G, LI Q, et al. Alpine grassland management based on ecosystem service relationships on the southern slopes of the Qilian Mountains, China. Journal of Environmental Management, 2021, 288: 112447, https://doi.org/10.1016/j.jenvman.2021.112447.

DOI

[59]
MASHIZI K A, HESHMATI G A, SALMAN MAHINI A R, et al. Exploring management objectives and ecosystem service trade-offs in a semi-arid rangeland basin in Southeast Iran. Ecological Indicators, 2019, 98: 794-803.

DOI

[60]
王世豪, 黄麟, 徐新良, 等. 粤港澳大湾区生态系统服务时空演化及其权衡与协同特征. 生态学报, 2020, 40(23): 8403-8416.

[WANG S H, HUANG L, XU X L, et al. Spatial and temporal evolution of ecosystem services and its trade-offs and synergies in Guangdong-Hong Kong-Macao Greater Bay Area. Acta Ecologica Sinica, 2020, 40(23): 8403-8416.]

[61]
DAI E F, WANG X L, ZHU J J, et al. Quantifying ecosystem service trade-offs for plantation forest management to benefit provisioning and regulating services. Ecology and Evolution, 2017, 7: 7807-7821.

DOI

[62]
XU S N, LIU Y F, WANG X, et al. Scale effect on spatial patterns of ecosystem services and associations among them in semi-arid area: A case study in Ningxia Hui Autonomous Region, China. Science of the Total Environment, 2017, 598: 297-306.

DOI

[63]
ZHANG Z Y, LIU Y F, WANG Y H, et al. What factors affect the synergy and tradeoff between ecosystem services, and how, from a geospatial perspective?. Journal of Cleaner Production, 2020, 257: 120454, https://doi.org/10.1016/j.jclepro.2020.120454.

DOI

[64]
BIEL R G, HACKER S D, RUGGIERO P, et al. Coastal protection and conservation on sandy beaches and dunes: Context‐dependent tradeoffs in ecosystem service supply. Ecosphere, 2017, 8(4): e01791, Doi: 10.1002/ecs2.1791.

[65]
YANG Y, LI M W, FENG X M, et al. Spatiotemporal variation of essential ecosystem services and their trade-off/synergy along with rapid urbanization in the Lower Pearl River Basin, China. Ecological Indicators, 2021, 133: 108439, https://doi.org/10.1016/j.ecolind.2021.108439.

DOI

[66]
QIU M L, VAN DE VOORDE T, LI T, et al. Spatiotemporal variation of agroecosystem service trade-offs and its driving factors across different climate zones. Ecological Indicators, 2021, 130: 108154, https://doi.org/10.1016/j.ecolind.2021.108154.

DOI

[67]
ZENG L, LI J, ZHOU Z X, et al. Optimizing land use patterns for the grain for Green Project based on the efficiency of ecosystem services under different objectives. Ecological Indicators, 2020, 114: 106347, https://doi.org/10.1016/j.ecolind.2020.106347.

DOI

[68]
FENG Q, ZHAO W W, HU X P, et al. Trading-off ecosystem services for better ecological restoration: A case study in the Loess Plateau of China. Journal of Cleaner Production, 2020, 257: 120469, https://doi.org/10.1016/j.jclepro.2020.120469.

DOI

[69]
FENG Q, DONG S Y, DUAN B L. The effects of land-use change/conversion on trade-offs of ecosystem services in three precipitation zones. Sustainability, 2021, 13: 13306, https://doi.org/10.3390/su132313306.

DOI

[70]
XU J Y, CHEN J X, LIU Y X. Partitioned responses of ecosystem services and their tradeoffs to human activities in the Belt and Road Region. Journal of Cleaner Production, 2020, 276: 123205, https://doi.org/10.1016/j.jclepro.2020.12320.

DOI

[71]
FENG Q, ZHAO W W, DUAN B L, et al. Coupling trade-offs and supply-demand of ecosystem services (ES): A new opportunity for ES management. Geography and Sustainability, 2021, 2: 275-280.

DOI

[72]
冯强, 赵文武, 段宝玲. 生态系统服务权衡强度与供需匹配度的关联性分析: 以山西省为例. 干旱区研究, 2022, 39(4): 1222-1233.

[FENG Q, ZHAO W W, DUAN B L. Relationship between trade-off intensity of ecosystem services and matching degree of supply and demand: A case study in Shanxi province. Arid Zone Research, 2022, 39(4): 1222-1233.]

[73]
QIAO X N, GU Y Y, ZOU C X, et al. Temporal variation and spatial scale dependency of the trade-offs and synergies among multiple ecosystem services in the Taihu Lake Basin of China. Science of the Total Environment, 2019, 651: 218-229.

DOI

[74]
XU X B, YANG G S, TAN Y, et al. Ecosystem services trade-offs and determinants in China's Yangtze River Economic Belt from 2000 to 2015. Science of the Total Environment, 2018, 634: 1601-1614.

DOI

[75]
HE Z Q, SHANG X, ZHANG T H, et al. Coupled regulatory mechanisms and synergy/trade-off strategies of human activity and climate change on ecosystem service value in the loess hilly fragile region of Northern Shaanxi, China. Ecological Indicators, 2022, 143: 109325, https://doi.org/10.1016/j.ecolind.2022.109325.

DOI

[76]
彭健, 胡晓旭, 赵明月, 等. 生态系统服务权衡研究进展: 从认知到决策. 地理学报, 2017, 72(6): 960-973.

[PENG J, HU X X, ZHAO M Y, et al. Research progress on ecosystem service trade-offs: From cognition to decision-making. Acta Geographica Sinica, 2017, 72(6): 960-973.]

DOI

[77]
刘晶晶, 王静, 戴建旺, 等. 黄河流域县域尺度生态系统服务供给和需求核算及时空变异. 自然资源学报, 2021, 36(1): 148-161.

[LIU J J, WANG J, DAI J W, et al. The relationship between supply and demand of ecosystem services and its spatio-temporal variation in the Yellow River Basin. Journal of Natural Resources, 2021, 36(1): 148-161.]

DOI

[78]
SUN W, LI D H, WANG X R, et al. Exploring the scale effects, trade-offs and driving forces of the mismatch of ecosystem services. Ecological Indicators, 2019, 103: 617-629.

DOI

[79]
LI X, XU H B, MA X D, et al. A two‐step spatially explicit optimization approach of integrating ecosystem services (ES) into land use planning (LUP) to generate the optimally sustainable schemes. Land Degradation & Development, 2023, 1-15, Doi: 10.1002/ldr.4624.

DOI

[80]
ZHAO W W, HAN Z L, YAN X L, et al. Land use management based on multi-scenario allocation and trade-offs of ecosystem services in Wafangdian county, Liaoning province, China. Peer J, 2019, 7: e7673, https://doi.org/10.7717/peerj.7673.

DOI

[81]
FAHRIG L, BAUDRY J, BROTONS L, et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes: Heterogeneity and biodiversity. Ecology Letters, 2011, 14(2): 101-112.

DOI PMID

Outlines

/