JOURNAL OF NATURAL RESOURCES >
Identification, characters and causes of housing vacancy:A perspective from multi-source data
Received date: 2021-09-06
Revised date: 2021-12-23
Online published: 2022-10-28
To figure out the number and pattern of the vacant houses is essential for spatial planning and city examination & evaluation. However, the limitation of fine data and methods has been a big barrier to accurately identifying and revealing the dynamic pattern of vacant houses. This paper developed a computational model to identify the vacant houses and to calculate the residential housing vacancy rate (HVR) based on the monthly electricity consumption data from all the households in X county in 2019. The results showed that: (1) The HVR of X county was 21.64%, and 33.81% of households had been vacant in 2019. Meanwhile, the rate of the households that were vacant in Chinese New Year's Eve and had been vacant all the year was 19.97% and 11.45%, respectively. (2) The monthly HVR fluctuated regularly, with February, August at the bottom, and May and November at the peak. However, the HVR of February when China's traditional Spring Festival fell did not decline as much as we expected. (3) The village HVR had spatial autocorrelation attribute and the urban built-up areas were the hotspots which deserve more attention. (4) Being vacant all the year is the top one model among 1931 vacant types. The paper held the view that the mechanism of the vacant in X county is (1) the change of the form of population migration and mobility; (2) housing filtering which occurred in rural families, and (3) over "housing urbanization" in the urban built-up areas. We argue that identifying and sensing vacant houses are fundamental works in spatial planning. Meanwhile, spatial planning should react properly to the rural vacant houses and transform the goal from the expansion of land to rising the wellbeing of people. We need to pay much attention to the vacant houses in the city because it is a signal of the mistake in planning. The vacant identifying computational model and the research result are helpful to advance housing vacancy study, which is significant for spatial planning.
JIAO Lin-shen , ZHANG Min , QIN Xiao , KONG Yu . Identification, characters and causes of housing vacancy:A perspective from multi-source data[J]. JOURNAL OF NATURAL RESOURCES, 2022 , 37(8) : 2004 -2017 . DOI: 10.31497/zrzyxb.20220806
表1 观测指标与村年空置率相关分析结果Table 1 Pearson correlation coefficients between observed indexes and village vacant rates |
变量类型 | 变量名称 | 全部村庄 | 不含城区村 | |||||
---|---|---|---|---|---|---|---|---|
相关系数 | 观测样 本数/个 | Sig.(双尾) | 相关系数 | 观测样 本数/个 | Sig.(双尾) | |||
人口 | 近5年户籍转城人口占户籍人口比例 | 0.234* | 85 | 0.0311 | 0.282* | 79 | 0.0119 | |
户籍人口(人)2019年 | 0.1149 | 121 | 0.2093 | 0.0092 | 111 | 0.9239 | ||
常住户占户籍户比例 | -0.0211 | 121 | 0.8182 | -0.0995 | 111 | 0.2986 | ||
常住人口占户籍人口比例 | 0.0912 | 121 | 0.3196 | 0.0488 | 111 | 0.6114 | ||
住房 | 宅均面积/m2 | -0.1139 | 106 | 0.2451 | -0.1159 | 104 | 0.2413 | |
近5年新建房屋数占户籍户比例 | -0.0453 | 109 | 0.6399 | -0.0356 | 101 | 0.7239 | ||
城市购房户占户籍户比例 | -0.0068 | 119 | 0.9416 | 0.0652 | 110 | 0.4989 | ||
所建住房占比_2010年至今 | 0.0980 | 100 | 0.3318 | 0.0690 | 95 | 0.5064 | ||
所建住房占比_2000—2010年间 | -0.1279 | 100 | 0.2046 | -0.1039 | 95 | 0.3162 | ||
所建住房占比_20世纪60至70年代间 | 0.0747 | 100 | 0.4602 | 0.0549 | 95 | 0.5975 | ||
教育设施 | 中小学数量/个_3000 m内 | 0.393** | 121 | 0.0000 | 0.281** | 111 | 0.0028 | |
幼儿园数量/个_2000 m内 | 0.310** | 121 | 0.0005 | 0.1772 | 111 | 0.0629 | ||
生活设施 | POI数量/个_3000 m内 | 0.290** | 120 | 0.0013 | 0.0965 | 110 | 0.3158 | |
市政设施 | 有排水管渠 | 0.228* | 114 | 0.0147 | 0.1217 | 104 | 0.2186 | |
村庄美化与否 | -0.0290 | 114 | 0.7593 | -0.0303 | 104 | 0.7599 | ||
收入与本地就业机会 | 人均年收入/元 | -0.0803 | 86 | 0.4621 | -0.0501 | 79 | 0.6612 | |
工业仓储用地面积/m2_3000米内 | 0.0310 | 121 | 0.7356 | -0.0859 | 111 | 0.3703 | ||
农业生产 | 人均耕地面积/m2 | -0.374** | 121 | 0.0000 | -0.260** | 111 | 0.0059 | |
耕地流转意愿 | 0.1255 | 118 | 0.1756 | 0.212* | 108 | 0.0276 | ||
耕地流转率 | 0.0195 | 110 | 0.8401 | 0.0567 | 104 | 0.5678 |
注:(1)*为p<0.05,** 为p<0.01;(2)观测指标为村域、村居民点中心的相关属性。数据来源于村情调查问卷、高德地图POI、三调、不动产数据库、统计年鉴等。 |
[1] |
国家卫生健康委员会. 中国流动人口发展报告·2018. 北京: 中国人口出版社, 2018: 25-26.
[ National Health Commission of the People's Republic of China. 2018 Report on China's Migrant Population Development. Beijing: China Population Publishing House, 2018: 25-26.]
|
[2] |
段成荣, 谢东虹, 吕利丹. 中国人口的迁移转变. 人口研究, 2019, 43(2): 14-22.
[
|
[3] |
程梦瑶, 段成荣. 迁徙中国形态得到进一步确认. 人口研究, 2021, 45(3): 75-81.
[
|
[4] |
甘犁. 2017中国城镇住房空置分析. https://chfs.swufe.edu.cn/Upload/2017中国城镇住房空置分析简版-1221(1), 2021-12-22.
[
|
[5] |
|
[6] |
孟斌, 张景秋, 齐志营. 北京市普通住宅空置量调查. 城市问题, 2009, 165(4): 6-11.
[
|
[7] |
张敬云. 住房租赁市场自然空置率确定方法研究. 管理现代化, 2019, 39(4): 117-119.
[
|
[8] |
|
[9] |
|
[10] |
刘彦随, 刘玉, 翟荣新. 中国农村空心化的地理学研究与整治实践. 地理学报, 2009, 64(10): 1193-1202.
[
|
[11] |
龙花楼, 李裕瑞, 刘彦随. 中国空心化村庄演化特征及其动力机制. 地理学报, 2009, 64(10): 1203-1213.
[
|
[12] |
屠爽爽, 龙花楼, 刘永强, 等. 农村居民点整治潜力测算方法研究进展与展望. 自然资源学报, 2015, 30(11): 1956-1968.
[
|
[13] |
王文龙. 中国合村并居政策的异化及其矫正. 经济体制改革, 2020, 222(3): 66-72.
[
|
[14] |
高舒琦. 如何应对物业空置、废弃与止赎: 美国土地银行的经验解析. 城市规划, 2017, 41(7): 106-115.
[
|
[15] |
杜志威, 金利霞, 张虹鸥. 精明收缩理念下城市空置问题的规划响应与启示: 基于德国、美国和日本的比较. 国际城市规划, 2020, 35(2): 33-41.
[
|
[16] |
衣霄翔, 赵天宇, 吴彦锋, 等. “危机”抑或“契机”: 应对收缩城市空置问题的国际经验研究. 城市规划学刊, 2020, 256(2): 95-101.
[
|
[17] |
胡语宸, 刘艳军, 孙宏日. 城市增长与收缩的演变过程及其影响因素: 以黑龙江省煤炭资源型城市为例. 地理科学, 2020, 40(9): 1450-1459.
[
|
[18] |
赵家辉, 李诚固, 马佐澎, 等. 城市精明收缩与我国老工业基地转型. 城市发展研究, 2017, 24(1): 135-138, 152.
[
|
[19] |
李红波, 刘美豆, 胡晓亮, 等. 精明收缩视角下乡村人居空间变化特征及类型划分: 以江苏省常熟市为例. 地理研究, 2020, 39(4): 939-955.
[
|
[20] |
赵民, 游猎, 陈晨. 论农村人居空间的“精明收缩”导向和规划策略. 城市规划, 2015, 39(7): 9-18, 24.
[
|
[21] |
焦林申, 张敏. 收缩乡村的空废成因与精明收缩规划策略: 基于豫东典型乡村的田野调查. 经济地理, 2021, 41(4): 223-234.
[
|
[22] |
周恺, 涂婳, 戴燕归. 国土空间规划下城市收缩与复兴中的空间形态调整. 经济地理, 2021, 41(4): 212-220.
[
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
焦林申, 张中华, 张沛, 等. 收缩区域乡镇新建街道空间品质测度: 以豫东虞城县为例. 北京规划建设, 2019, 186(3): 28-35.
[
|
[29] |
|
[30] |
《国外住房空置率统计方法》课题组. 欧盟及日本等国家和地区住房空置率统计方法: 境外住房空置率统计研究报告之三. 中国统计, 2011, 350(2): 45-47.
[ Research Group on "Statistical Methods of Foreign Housing Vacancy Rates". Statistical methods of housing vacancy rates in countries and regions such as the European Union, Japan and other countries and regions: The third report. China Statistics, 2011, 350(2): 45-47.]
|
[31] |
贾海. 我国商品房空置率计算方法及合理区间研究. 城市开发, 2004, (8): 70-73.
[
|
[32] |
|
[33] |
|
[34] |
|
[35] |
朱竑, 张博, 马凌. 新型城镇化背景下中国流动人口研究: 议题与展望. 地理科学, 2019, 39(1): 4-14.
[
|
[36] |
肖磊, 潘劼. 人口流出地区城镇化路径机制再认识: 以四川省县域单元为例. 地理科学进展, 2020, 39(3): 402-409.
[
|
[37] |
刘恬, 胡伟艳, 杜晓华, 等. 基于村庄类型的全域土地综合整治研究. 中国土地科学, 2021, 35(5): 102-110.
[
|
[38] |
甄峰, 张姗琪, 秦萧, 等. 从信息化赋能到综合赋能: 智慧国土空间规划思路探索. 自然资源学报, 2019, 34(10): 2060-2072.
[
|
[39] |
|
[40] |
亨利·列斐伏尔. 空间与政治. 上海: 上海人民出版社, 2015: 1-12.
[
|
[41] |
钮心毅, 刘思涵, 朱艺. 地区间人员流动视角下的中国城镇化空间特征研究. 城市规划学刊, 2021, (1): 82-89.
[
|
[42] |
|
[43] |
林李月, 朱宇, 柯文前. 城镇化中后期中国人口迁移流动形式的转变及政策应对. 地理科学进展, 2020, 39(12): 2054-2067.
[
|
/
〈 |
|
〉 |