JOURNAL OF NATURAL RESOURCES >
Relationship between construction land and slope in rapidly expanding mountain cities: A case study in Guiyang, China
Received date: 2021-03-22
Revised date: 2021-06-23
Online published: 2022-09-28
With the rapid urbanization, the land utilization rate in the mountainous areas has been increasing. Therefore, we should deepen our understanding of the construction land expansion in mountain cities, so as to carry out more scientific management of land use in mountainous areas. This paper studied the slope gradient effect of construction land growth in Guiyang, a typical mountain city in Southwest China, using digital elevation model (DEM) and construction land datasets of 2000, 2005, 2010, 2015 and 2020, which was integrated with zonal statistics approaches based on spatial statistics unit of kilometer grid and slope section with one degree interval. Combined with the information of construction land density and slope, we propose a novel method to quantify the spatial pattern of construction land climbing. The research was designed to address three research questions: Is there a synergistic relationship between the area of construction land and the average slope of construction land? What are the distribution and change characteristics of construction land density on the slope gradient? What is the relationship between the density of construction land and the heat of construction land climbing? The results showed that: (1) The total area of construction land is positively correlated with the average slope of construction land, both of which increase gradually across the entire study period. However, the average slope of new construction land gradually becomes steeper among four neighboring periods, while the area of new construction land turns from increasing to decreasing, implying that they are not synchronous. (2) The density of construction land in each period decreased with the increase of slope, no matter in one period or in the other four periods. (3) The density of construction land has a significant impact on the heat of construction land climbing, and this influence increases as the average slope of the background ground rises. This paper suggests that the phenomenon of construction land climbing would promote the intensification and compactness of construction land in mountain cities.
Key words: mountain city; urban expansion; construction land; slope; Guiyang city
PENG Qiu-zhi , MA Shao-hua , DENG Qi-hui , MA Jing-wei . Relationship between construction land and slope in rapidly expanding mountain cities: A case study in Guiyang, China[J]. JOURNAL OF NATURAL RESOURCES, 2022 , 37(7) : 1865 -1875 . DOI: 10.31497/zrzyxb.20220714
表1 分区县各变化时段新增建设用地面积及其平均坡度Table 1 Area of newly-added construction land and average slope |
地区 | 2000—2005年 | 2005—2010年 | 2010—2015年 | 2015—2020年 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
面积/km2 | 坡度/(°) | 面积/km2 | 坡度/(°) | 面积/km2 | 坡度/(°) | 面积/km2 | 坡度/(°) | ||||
南明区 | 4.4 | 6.5 | 10.2 | 7.3 | 20.6 | 8.6 | 10.8 | 8.4 | |||
云岩区 | 4.0 | 8.5 | 7.6 | 9.6 | 13.8 | 12.2 | 3.6 | 12.5 | |||
花溪区 | 5.0 | 5.5 | 22.1 | 6.2 | 65.9 | 6.5 | 27.1 | 6.8 | |||
乌当区 | 3.1 | 5.9 | 7.3 | 7.4 | 15.6 | 8.8 | 5.9 | 8.7 | |||
白云区 | 4.0 | 4.5 | 13.3 | 4.3 | 31.3 | 4.9 | 10.2 | 5.7 | |||
观山湖区 | 5.0 | 5.0 | 20.9 | 6.0 | 34.6 | 6.9 | 8.8 | 7.8 | |||
开阳县 | 1.1 | 6.0 | 5.6 | 7.4 | 10.3 | 8.4 | 5.8 | 9.0 | |||
息烽县 | 1.1 | 7.3 | 4.1 | 7.7 | 5.5 | 8.4 | 3.3 | 9.4 | |||
修文县 | 1.8 | 4.0 | 4.3 | 4.6 | 15.9 | 4.9 | 6.9 | 5.0 | |||
清镇市 | 2.3 | 5.3 | 10.2 | 5.4 | 29.3 | 6.2 | 10.2 | 7.0 | |||
全贵阳市 | 31.9 | 5.8 | 105.7 | 6.4 | 242.9 | 7.0 | 92.5 | 7.4 |
图8 背景坡度分组下2020年建设用地坡度份额与建设用地密度关系Fig. 8 Relationship between construction land slope share and construction land density in 2020 under background slope grouping |
表2 背景坡度分组下各年份拟合参数Table 2 Fitting parameters for each year under background slope grouping |
年份 | 0~5° | 5~10° | 10~15° | >15° | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
R2 | a | R2 | a | R2 | a | R2 | a | ||||
2000 | 0.898 | 0.007 | 0.943 | 0.009 | 0.893 | 0.013 | 0.896 | 0.016 | |||
2005 | 0.895 | 0.005 | 0.941 | 0.007 | 0.891 | 0.010 | 0.906 | 0.013 | |||
2010 | 0.900 | 0.003 | 0.935 | 0.004 | 0.912 | 0.006 | 0.923 | 0.008 | |||
2015 | 0.872 | 0.001 | 0.923 | 0.002 | 0.912 | 0.003 | 0.944 | 0.004 | |||
2020 | 0.859 | 0.001 | 0.920 | 0.002 | 0.916 | 0.003 | 0.944 | 0.004 |
[1] |
黄光宇. 山地城市学原理. 北京: 中国建筑工业出版社, 2006: 1-6.
[
|
[2] |
陈吉煜, 刘勇, 何东. 山地城市的蔓延特征分析: 以重庆主城区为例. 山地学报, 2018, 36(3): 432-440.
[
|
[3] |
汪小钦, 徐涵秋, 陈崇成. 福清市城市时空扩展的遥感监测及其动力机制. 福州大学学报: 自然科学版, 2000, 28(2): 111-115.
[
|
[4] |
郭洪峰, 许月卿, 吴艳芳. 基于地形梯度的土地利用格局与时空变化分析: 以北京市平谷区为例. 经济地理, 2013, 33(1): 160-166, 186.
[
|
[5] |
臧玉珠, 刘彦随, 杨园园. 山区县域土地利用格局变化及其地形梯度效应: 以井冈山市为例. 自然资源学报, 2019, 34(7): 1391-1404.
[
|
[6] |
叶高斌, 苏伟忠, 陈维肖. 太湖流域城乡建设用地扩张的高程特征变化. 自然资源学报, 2015, 30(6): 938-950.
[
|
[7] |
胡荣明, 李锐, 郭斌, 等. 坡度对土地利用/覆被变化的影响研究. 水土保持通报, 2011, 31(6): 203-206, 242.
[
|
[8] |
张静静, 朱文博, 赵芳, 等. 山地平原过渡带地形起伏特征及其对景观格局的影响: 以太行山淇河流域为例. 中国科学: 地球科学, 2018, 48(4): 476-486.
[
|
[9] |
陈铸, 黄雅冰, 朱志鹏, 等. 基于地形梯度特征的福州市景观格局演变. 应用生态学报, 2018, 29(12): 4135-4144.
[
|
[10] |
喻红, 曾辉, 江子瀛. 快速城市化地区景观组分在地形梯度上的分布特征研究. 地理科学, 2001, 21(1): 64-69.
[
|
[11] |
钟珊, 赵小敏, 郭熙, 等. 基于空间适宜性评价和人口承载力的贵溪市中心城区城市开发边界的划定. 自然资源学报, 2018, 33(5): 801-812.
[
|
[12] |
刘海龙, 石培基. 绿洲型城市空间扩展的模拟及多情景预测: 以酒泉、嘉峪关市为例. 自然资源学报, 2017, 32(12): 2075-2088.
[
|
[13] |
|
[14] |
彭秋志, 唐铃, 陈杰, 等. 2000—2015年深圳市建设用地坡谱演变研究. 自然资源学报, 2018, 33(12): 2200-2212.
[
|
[15] |
|
[16] |
李鹏, 李振洪, 施闯, 等. 中国地区30 m分辨率SRTM质量评估. 测绘通报, 2016, (9): 24-28.
[
|
[17] |
赵亚莉, 刘友兆. 城市土地开发强度差异及影响因素研究: 基于222个地级及以上城市面板数据. 资源科学, 2013, 35(2): 380-387.
[
|
[18] |
刘盛和, 吴传钧, 沈洪泉. 基于GIS的北京城市土地利用扩展模式. 地理学报, 2000, 55(4): 407-416.
[
|
[19] |
|
[20] |
黄光宇. 山地城市空间结构的生态学思考. 城市规划, 2005, (1): 57-63.
[
|
[21] |
高红艳, 刁承泰. 试论喀斯特地貌对城市发展建设的影响: 以喀斯特山区城市贵阳为例. 中国岩溶, 2010, 29(1): 81-86.
[
|
/
〈 |
|
〉 |