JOURNAL OF NATURAL RESOURCES >
Spatio-temporal dynamic characteristics of the ecosystem service values under differential economic growth: A case study of the Pearl River-West River Economic Belt
Received date: 2021-08-28
Revised date: 2022-03-18
Online published: 2022-09-28
Promoting the construction of ecological civilization is conductive to alleviate the contradiction between ecosystem degradation and the people's high-level requirements for a better life, which leads the regions to achieve a win-win situation between ecological value enhancement and economic growth. This paper quantitatively analyzes the spatial and temporal patterns of ecosystem service values (ESV) in the Pearl River-West River Economic Belt in 2005, 2010, 2015, and 2018 by using the method of the value equivalent factor in unit area, which is modified by biomass and vegetation coverage. Further, this paper constructs a geographically weighted regression (GWR) model based on the STIRPAT model to empirically analyze the spatial heterogeneity and spatial non-stationarity of county economic growth affecting unit area ESV. The results shows that: (1) From the perspective of spatio-temporal variation pattern, the ESV of the study area was 4783.391 billion yuan, 4597.193 billion yuan, 5231.360 billion yuan, and 5074.459 billion yuan in 2005, 2010, 2015, and 2018, respectively, documenting a time-varying trend of decreasing, then increasing, and decreasing again. The contribution of the first classification of land-use types to ESV was ranked as forest land > watershed > grassland > cropland > wetland > desert. From the perspective of spatial trends, the ESV showed an alternative distribution of high and low value areas, and presented a spatial pattern of "low in the west, but high in the east". Some districts and counties located at the border between Guangdong and Guangxi have higher ESV per unit area, which appeared a trend of spreading from east to west. However, ESV in the Pearl River Delta region was hardly affected by the diffusion trend. (2) The number of counties with a significant effect of GDP per capita on ESV per unit area was increasing and concentrated in the eastern, central and northern parts. Among them, the Guangdong section of the Pearl River-West River Economic Belt showed a continuous and significant negative effect. In contrast, the central and northern parts of Guangxi showed a change from negative to positive effect, which is in accordance with the EKC hypothesis. Based on the above results, this paper proposes targeted recommendations. First, further declines in ESV in the Pearl River Delta and its western contiguous parts should be avoided. Second, the central and northern parts of the Pearl River-West River Economic Belt should be given more preferential policies to speed up regional development. Third, the northwestern and southwestern parts should pay more attention to the coordination of economic growth and ecological environment. The results of this paper have important implications to the localized development that balances economic growth and ecological environment.
ZHAO Yong-chun , SU Fang-lin . Spatio-temporal dynamic characteristics of the ecosystem service values under differential economic growth: A case study of the Pearl River-West River Economic Belt[J]. JOURNAL OF NATURAL RESOURCES, 2022 , 37(7) : 1782 -1798 . DOI: 10.31497/zrzyxb.20220709
表1 珠江—西江经济带生态系统服务价值变化Table 1 Changes of ecosystem service value in the Pearl River-West River Economic Belt |
时间段/年 | 耕地 | 林地 | 草地 | 湿地 | 荒漠 | 水域 | 小计 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
水田 | 旱地 | 有林地 | 灌木林 | 疏林地 | 其他林地 | 高覆盖度 | 中覆盖度 | 低覆盖度 | 荒漠 | 裸地 | |||||||
ESV/亿元 | 2005 | 832.1 | 770.14 | 31543.23 | 3189.57 | 2514.81 | 98.48 | 2993.86 | 95.44 | 0.27 | 112.49 | 0.03 | 0.04 | 5683.45 | 47833.91 | ||
2010 | 800.76 | 743.49 | 30225.46 | 3070.21 | 2430.56 | 131.82 | 2928.94 | 86.84 | 0.21 | 92.36 | 0.03 | 0.04 | 5461.22 | 45971.93 | |||
2015 | 895.91 | 832.28 | 34777.31 | 3332.96 | 2615.38 | 149.85 | 3375.71 | 100.42 | 0.27 | 103.26 | 0.05 | 0.06 | 6130.13 | 52313.6 | |||
2018 | 882.95 | 802.81 | 34095.1 | 3261.17 | 2578.15 | 140.88 | 3249.45 | 93.04 | 0.27 | 85.74 | 0.04 | 0.03 | 5554.96 | 50744.59 | |||
贡献率/% | 2005 | 1.7396 | 1.61 | 65.9432 | 6.668 | 5.2574 | 0.2059 | 6.2589 | 0.1995 | 0.0006 | 0.2352 | 0.0001 | 0.0001 | 11.8816 | 100 | ||
2010 | 1.7418 | 1.6173 | 65.7476 | 6.6784 | 5.2871 | 0.2867 | 6.3712 | 0.1889 | 0.0005 | 0.2009 | 0.0001 | 0.0001 | 11.8795 | 100 | |||
2015 | 1.7126 | 1.591 | 66.4785 | 6.3711 | 4.9994 | 0.2865 | 6.4528 | 0.192 | 0.0005 | 0.1974 | 0.0001 | 0.0001 | 11.718 | 100 | |||
2018 | 1.74 | 1.5821 | 67.1896 | 6.4266 | 5.0806 | 0.2776 | 6.4035 | 0.1833 | 0.0005 | 0.169 | 0.0001 | 0.0001 | 10.9469 | 100 | |||
变化量/亿元 | 2005—2010 | -31.34 | -26.65 | -1317.77 | -119.36 | -84.25 | 33.33 | -64.92 | -8.6 | -0.06 | -20.13 | 0 | 0 | -222.22 | -1861.98 | ||
2010—2015 | 95.15 | 88.79 | 4551.85 | 262.75 | 184.82 | 18.04 | 446.76 | 13.59 | 0.06 | 10.9 | 0.03 | 0.02 | 668.91 | 6341.67 | |||
2015—2018 | -12.96 | -29.48 | -682.21 | -71.79 | -37.23 | -8.97 | -126.25 | -7.39 | 0 | -17.52 | -0.01 | -0.03 | -575.18 | -1569.01 | |||
2005—2018 | 50.85 | 32.66 | 2551.87 | 71.59 | 63.35 | 42.4 | 255.59 | -2.4 | 0 | -26.75 | 0.01 | -0.01 | -128.49 | 2910.68 | |||
变化率/% | 2005—2010 | -3.77 | -3.46 | -4.18 | -3.74 | -3.35 | 33.85 | -2.17 | -9.01 | -21.64 | -17.89 | -2.98 | 1.89 | -3.91 | -3.89 | ||
2010—2015 | 11.88 | 11.94 | 15.06 | 8.56 | 7.6 | 13.68 | 15.25 | 15.65 | 28.48 | 11.8 | 101.73 | 40.05 | 12.25 | 13.79 | |||
2015—2018 | -1.45 | -3.54 | -1.96 | -2.15 | -1.42 | -5.99 | -3.74 | -7.35 | 0.96 | -16.96 | -23.71 | -53.7 | -9.38 | -3 | |||
2005—2018 | 6.11 | 4.24 | 8.09 | 2.24 | 2.52 | 43.05 | 8.54 | -2.52 | 1.64 | -23.78 | 49.31 | -33.93 | -2.26 | 6.08 |
表2 珠江—西江经济带单位行政面积生态系统服务价值的时空变化Table 2 Spatio-temporal change of ecosystem service value per unit of administrative area in the Pearl River-West River Economic Belt (元/hm2) |
地级市 | 县区 | 2005年 | 2010年 | 2015年 | 2018年 | 地级市 | 县区 | 2005年 | 2010年 | 2015年 | 2018年 |
---|---|---|---|---|---|---|---|---|---|---|---|
南宁 | 兴宁 | 212221 | 211044 | 239252 | 249250 | 百色 | 右江 | 326329 | 312360 | 358408 | 347948 |
青秀 | 258345 | 251225 | 281545 | 266889 | 田阳 | 194033 | 181595 | 204665 | 206285 | ||
江南 | 183386 | 177564 | 200064 | 207274 | 田东 | 230394 | 222157 | 251799 | 249283 | ||
西乡塘 | 186974 | 173057 | 196408 | 205886 | 平果 | 182978 | 176636 | 197848 | 192606 | ||
良庆 | 265798 | 264714 | 297969 | 288064 | 德保 | 195904 | 186665 | 211324 | 207457 | ||
邕宁 | 152556 | 149990 | 167457 | 168332 | 那坡 | 185402 | 180657 | 202557 | 194805 | ||
武鸣 | 227816 | 221461 | 251845 | 232142 | 凌云 | 268556 | 257365 | 293245 | 282950 | ||
隆安 | 184674 | 177853 | 200675 | 195295 | 乐业 | 307401 | 301254 | 343547 | 337623 | ||
马山 | 202639 | 197822 | 222274 | 223027 | 田林 | 384348 | 371784 | 428112 | 415755 | ||
上林 | 215199 | 207684 | 235451 | 213186 | 西林 | 326440 | 311277 | 356259 | 360529 | ||
宾阳 | 216243 | 208732 | 239422 | 241458 | 隆林 | 238576 | 230207 | 262586 | 261934 | ||
横州 | 276008 | 269803 | 307843 | 292171 | 靖西 | 160467 | 155403 | 172583 | 167447 | ||
柳州 | 城中 | 360115 | 347401 | 396835 | 444423 | 广州 | 荔湾 | 197519 | 190810 | 215687 | 233552 |
鱼峰 | 419871 | 406239 | 458344 | 485286 | 越秀 | 88567 | 85591 | 97454 | 191760 | ||
柳南 | 576159 | 562274 | 633709 | 622319 | 海珠 | 184913 | 162855 | 183580 | 312734 | ||
柳北 | 183792 | 177649 | 201107 | 223765 | 天河 | 261741 | 250284 | 286436 | 232203 | ||
柳江 | 99474 | 98770 | 109873 | 101954 | 白云 | 219532 | 202960 | 232216 | 260306 | ||
柳城 | 161369 | 156337 | 175843 | 181279 | 黄浦 | 338508 | 308719 | 343685 | 347204 | ||
鹿寨 | 265769 | 257601 | 292814 | 285084 | 番禺 | 368302 | 361138 | 404946 | 409189 | ||
融安 | 328799 | 317454 | 362302 | 350765 | 花都 | 325940 | 305064 | 343091 | 348991 | ||
融水 | 355573 | 344528 | 396088 | 379449 | 南沙 | 326843 | 303998 | 340208 | 378632 | ||
三江 | 290823 | 282447 | 321940 | 312857 | 增城 | 338100 | 341189 | 392294 | 378676 | ||
梧州 | 万秀 | 368837 | 349452 | 393943 | 367711 | 从化 | 414770 | 406650 | 468349 | 461906 | |
长洲 | 373420 | 359736 | 396741 | 382070 | 佛山 | 禅城 | 400902 | 368789 | 336115 | 86527 | |
龙圩 | 248073 | 219977 | 247781 | 244964 | 南海 | 423497 | 386603 | 429737 | 233892 | ||
苍梧 | 402141 | 388354 | 443442 | 437009 | 三水 | 490235 | 466934 | 515493 | 522335 | ||
藤县 | 367687 | 351913 | 402405 | 397635 | 高明 | 439923 | 405734 | 459738 | 458204 | ||
蒙山 | 373372 | 362890 | 415730 | 408173 | 顺德 | 853377 | 779898 | 850733 | 293782 | ||
岑溪 | 377281 | 358518 | 411637 | 413930 | 肇庆 | 端州 | 478208 | 437123 | 497883 | 445168 | |
贵港 | 港北 | 218313 | 214593 | 245641 | 237915 | 鼎湖 | 671356 | 643441 | 734470 | 763336 | |
港南 | 191521 | 185063 | 211011 | 196745 | 广宁 | 525432 | 494374 | 571188 | 554416 | ||
覃塘 | 177170 | 166614 | 188815 | 186096 | 怀集 | 448499 | 425434 | 487235 | 480987 | ||
平南 | 274788 | 263356 | 302465 | 294961 | 封开 | 479437 | 458608 | 526485 | 521106 | ||
桂平 | 239127 | 230507 | 262343 | 255982 | 德庆 | 481815 | 447042 | 512938 | 489811 | ||
来宾 | 兴宾 | 143539 | 140633 | 157778 | 157208 | 高要 | 458008 | 435065 | 497089 | 505192 | |
忻城 | 171509 | 167340 | 186002 | 180488 | 四会 | 439307 | 426363 | 485568 | 515177 | ||
象州 | 218220 | 211475 | 240528 | 240934 | 云浮 | 云城 | 475148 | 456020 | 524640 | 497942 | |
武宣 | 215855 | 212134 | 240979 | 232192 | 新兴 | 389706 | 382282 | 435644 | 428664 | ||
金秀 | 401078 | 383816 | 442518 | 431894 | 郁南 | 428908 | 410140 | 470171 | 451774 | ||
合山 | 154237 | 158579 | 178448 | 179619 | 云安 | 443556 | 407287 | 464852 | 466857 | ||
崇左 | 江州 | 179159 | 174205 | 195615 | 190385 | 罗定 | 314337 | 314120 | 358655 | 339980 | |
扶绥 | 183308 | 182515 | 207022 | 204477 | |||||||
宁明 | 303434 | 289993 | 332023 | 332757 | |||||||
龙州 | 152361 | 147071 | 163323 | 160177 | |||||||
大新 | 165577 | 160008 | 178774 | 177066 | |||||||
天等 | 191700 | 183610 | 205893 | 199972 | |||||||
凭祥 | 309652 | 303365 | 346355 | 342723 |
表3 最小二乘法模型回归结果Table 3 Estimated results of the OLS model |
变量 | 2005年 | 2010年 | 2015年 | 2018年 |
---|---|---|---|---|
截距 | 11.02*** (19.60) | 11.13*** (18.60) | 11.54*** (20.52) | 12.07*** (19.39) |
lnPGDP | 0.18*** (2.77) | 0.14** (2.21) | 0.10* (1.88) | 0.05 (0.80) |
lnPEOPLE | -0.13** (-2.20) | -0.08 (-1.25) | -0.05 (-1.09) | -0.00 (-0.04) |
lnSECTOR | 0.01 (0.08) | -0.07 (-0.97) | -0.11** (-2.13) | -0.05 (-0.81) |
Mean VIF | 1.96 | 2.07 | 1.67 | 1.79 |
F-value | 3.07 [0.03] | 3.08 [0.03] | 4.23 [0.01] | 0.60 [0.62] |
R2 | 0.11 | 0.11 | 0.13 | 0.02 |
Adjusted R2 | 0.08 | 0.08 | 0.10 | -0.01 |
AIC | 86.69 | 84.63 | 92.36 | 98.20 |
残差平方和 | 12.53 | 12.20 | 13.44 | 14.36 |
样本数/个 | 77 | 77 | 88 | 88 |
注:*、**和***分别表示在10%、5%和1%的水平下显著,圆括号内数据为t统计量,下同。方括号内数据为P值。 |
表4 地理加权回归模型诊断指标Table 4 Diagnosis index of the GWR model |
模型参数 | 2005年 | 2010年 | 2015年 | 2018年 |
---|---|---|---|---|
R2 | 0.79 | 0.78 | 0.59 | 0.54 |
Adjusted R2 | 0.69 | 0.68 | 0.50 | 0.44 |
AIC | 6.50 | 7.09 | 43.95 | 50.63 |
AICc | 21.13 | 21.34 | 48.51 | 55.93 |
残差平方和 | 2.93 | 2.97 | 6.39 | 6.74 |
表5 地理加权回归模型估计结果Table 5 Estimated results of the GWR model |
年份 | 变量 | 平均值 | 最小值 | 1/4分位值 | 中位值 | 3/4分位值 | 最大值 |
---|---|---|---|---|---|---|---|
2005 | 截距 | 13.84 | 8.38 | 12.43 | 13.99 | 15.27 | 16.66 |
lnPGDP | -0.03 | -0.22 | -0.10 | -0.02 | 0.06 | 0.13 | |
lnPEOPLE | -0.08 | -0.35 | -0.15 | -0.10 | -0.01 | 0.54 | |
lnSECTOR | 0.04 | -0.42 | -0.24 | 0.08 | 0.26 | 0.29 | |
2010 | 截距 | 13.78 | 6.00 | 12.03 | 13.96 | 15.67 | 19.53 |
lnPGDP | -0.07 | -0.51 | -0.13 | -0.06 | 0.05 | 0.15 | |
lnPEOPLE | -0.05 | -0.38 | -0.19 | -0.07 | 0.04 | 0.45 | |
lnSECTOR | -0.13 | -0.41 | -0.29 | -0.10 | 0.01 | 0.08 | |
2015 | 截距 | 13.91 | 11.81 | 12.82 | 13.67 | 15.34 | 16.18 |
lnPGDP | 0.00 | -0.17 | -0.09 | 0.07 | 0.08 | 0.11 | |
lnPEOPLE | -0.10 | -0.17 | -0.12 | -0.11 | -0.07 | -0.03 | |
lnSECTOR | -0.09 | -0.22 | -0.19 | -0.09 | 0.00 | 0.06 | |
2018 | 截距 | 14.66 | 10.89 | 12.44 | 13.52 | 17.36 | 19.33 |
lnPGDP | 0.01 | -0.20 | -0.12 | 0.08 | 0.10 | 0.16 | |
lnPEOPLE | -0.16 | -0.31 | -0.24 | -0.15 | -0.09 | 0.00 | |
lnSECTOR | -0.02 | -0.11 | -0.10 | 0.00 | 0.03 | 0.07 |
表6 GWR模型人均GDP回归系数的时空分布Table 6 Spatio-temporal distribution of regression coefficients of GDP per capita in the GWR model |
地级市 | 县区 | 2005年 | 2010年 | 2015年 | 2018年 | 地级市 | 县区 | 2005年 | 2010年 | 2015年 | 2018年 |
---|---|---|---|---|---|---|---|---|---|---|---|
南宁 | 兴宁 | — | — | — | — | 百色 | 右江 | — | — | — | — |
青秀 | — | — | — | — | 田阳 | — | — | — | — | ||
江南 | — | — | — | — | 田东 | — | — | — | — | ||
西乡塘 | — | — | — | — | 平果 | — | — | — | — | ||
良庆 | — | — | — | — | 德保 | — | — | — | — | ||
邕宁 | — | — | — | — | 那坡 | — | — | — | — | ||
武鸣 | — | — | — | 0.12* (1.75) | 凌云 | — | — | — | — | ||
隆安 | — | — | — | — | 乐业 | — | — | — | 0.09* (1.74) | ||
马山 | — | — | 0.10* (1.68) | 0.13** (2.08) | 田林 | — | — | — | — | ||
上林 | — | — | 0.11* (1.82) | 0.14** (2.19) | 西林 | — | — | — | — | ||
宾阳 | — | — | — | 0.13* (1.90) | 隆林 | — | — | — | 0.09* (1.74) | ||
横州 | — | — | — | — | 靖西 | — | — | — | — | ||
柳州 | 城中 | — | — | — | 0.13** (2.05) | 广州 | 荔湾 | — | — | -0.16*** (-2.77) | -0.20*** (-2.92) |
鱼峰 | — | — | — | 0.13** (2.05) | 越秀 | — | — | -0.16*** (-2.77) | -0.19*** (-2.91) | ||
柳南 | — | — | — | 0.13** (2.05) | 海珠 | — | — | -0.16*** (-2.76) | -0.19*** (-2.86) | ||
柳北 | — | — | — | 0.13** (2.05) | 天河 | — | — | -0.16*** (-2.81) | -0.19*** (-2.93) | ||
柳江 | — | -0.48*** (-3.13) | — | 0.14** (2.16) | 白云 | — | — | -0.16*** (-2.86) | -0.19*** (-2.93) | ||
柳城 | — | -0.51*** (-3.33) | — | 0.13** (2.05) | 黄浦 | — | — | -0.15*** (-2.78) | -0.18*** (-2.91) | ||
鹿寨 | — | -0.33** (-2.64) | — | 0.11* (1.74) | 番禺 | — | — | -0.14*** (-2.69) | -0.17*** (-2.87) | ||
融安 | — | — | — | 0.08* (1.87) | 花都 | -0.18*** (-2.94) | -0.14** (-2.28) | -0.17*** (-2.99) | -0.19*** (-3.12) | ||
融水 | — | -0.28** (-2.52) | — | 0.10* (1.98) | 南沙 | -0.13* (-1.84) | — | -0.14*** (-2.66) | -0.17*** (-2.88) | ||
三江 | 0.08** (2.02) | — | 0.06* (1.80) | 0.07* (1.81) | 增城 | — | — | -0.14*** (-2.78) | -0.17*** (-2.99) | ||
梧州 | 万秀 | — | — | — | — | 从化 | -0.19*** (-3.19) | -0.16*** (-2.66) | -0.14*** (-2.81) | -0.17*** (-3.05) | |
长洲 | — | — | — | — | 佛山 | 禅城 | -0.17** (-2.36) | — | -0.15*** (-2.81) | -0.19*** (-2.95) | |
龙圩 | — | — | — | — | 南海 | -0.18** (-2.56) | — | -0.15*** (-2.83) | -0.19*** (-2.98) | ||
苍梧 | — | — | — | — | 三水 | -0.21*** (-3.22) | -0.15** (-2.3) | -0.15*** (-2.96) | -0.18*** (-3.14) | ||
地级市 | 县区 | 2005年 | 2010年 | 2015年 | 2018年 | 地级市 | 县区 | 2005年 | 2010年 | 2015年 | 2018年 |
梧州 | 藤县 | 0.11* (1.99) | — | — | — | 佛山 | 高明 | -0.14*** (-2.97) | -0.11** (-2.41) | -0.13** (-2.56) | -0.15*** (-2.85) |
蒙山 | — | — | — | — | 顺德 | -0.15** (-2.02) | — | -0.14*** (-2.71) | -0.18*** (-2.90) | ||
岑溪 | 0.07* (1.66) | — | — | — | 肇庆 | 端州 | -0.13*** (-2.70) | -0.11** (-2.41) | -0.13** (-2.63) | -0.15*** (-2.88) | |
贵港 | 港北 | — | — | — | — | 鼎湖 | -0.17*** (-3.82) | -0.14*** (-3.16) | -0.14*** (-2.86) | -0.16*** (-3.00) | |
港南 | — | — | — | — | 广宁 | -0.16*** (-3.97) | -0.15*** (-3.52) | -0.12** (-2.61) | -0.14*** (-2.81) | ||
覃塘 | — | — | — | 0.11* (1.70) | 怀集 | -0.11*** (-3.08) | -0.10*** (-2.81) | -0.08* (-1.96) | -0.10** (-2.29) | ||
平南 | — | — | — | — | 封开 | — | -0.06* (-1.70) | — | -0.09** (-2.00) | ||
桂平 | — | — | — | — | 德庆 | — | -0.08* (-1.73) | -0.09* (-1.97) | -0.12** (-2.41) | ||
来宾 | 兴宾 | — | -0.30* (-1.76) | 0.11* (1.80) | 0.16** (2.41) | 高要 | -0.19*** (-3.68) | -0.14*** (-2.90) | -0.15*** (-2.85) | -0.17*** (-3.03) | |
忻城 | — | -0.30** (-2.30) | 0.10* (1.75) | 0.15** (2.37) | 四会 | -0.19*** (-4.40) | -0.15*** (-3.69) | -0.14*** (-2.97) | -0.16*** (-3.08) | ||
象州 | — | -0.46*** (-2.92) | — | 0.12* (1.77) | 云浮 | 云城 | — | — | -0.09** (-2.02) | -0.12** (-2.49) | |
武宣 | — | -0.32* (-1.86) | — | 0.12* (1.82) | 新兴 | -0.08* (-1.94) | -0.08* (-1.82) | -0.09** (-2.02) | -0.12** (-2.52) | ||
金秀 | — | — | — | — | 郁南 | — | — | — | -0.09* (-1.88) | ||
合山 | — | -0.30** (-2.08) | 0.11* (1.83) | 0.16** (2.51) | 云安 | — | -0.08* (-1.68) | -0.09** (-2.05) | -0.12** (-2.49) | ||
崇左 | 江州 | — | — | — | — | 罗定 | — | -0.07* (-1.67) | -0.08* (-1.85) | -0.11** (-2.40) | |
扶绥 | — | — | — | — | |||||||
宁明 | — | — | — | — | |||||||
龙州 | — | — | — | — | |||||||
大新 | — | — | — | — | |||||||
天等 | — | — | — | — | |||||||
凭祥 | — | — | — | — |
[1] |
於方, 杨威杉, 马国霞, 等. 生态价值核算的国内外最新进展与展望. 环境保护, 2020, 48(14): 18-24.
[
|
[2] |
|
[3] |
陈万旭, 李江风, 朱丽君. 长江中游地区生态系统服务价值空间分异及敏感性分析. 自然资源学报, 2019, 34(2): 325-337.
[
|
[4] |
|
[5] |
|
[6] |
赵鸿雁, 陈英, 杨洁, 等. 基于改进当量的甘肃省耕地生态系统服务价值及其与区域经济发展的空间关系研究. 干旱区地理, 2018, 41(4): 851-858.
[
|
[7] |
谢高地, 鲁春霞, 冷允法, 等. 青藏高原生态资产的价值评估. 自然资源学报, 2003, 18(2): 189-196.
[
|
[8] |
曹跃群, 赵世宽, 杨玉玲, 等. 重庆市生态系统服务价值与区域经济增长的时空动态关系研究. 长江流域资源与环境, 2020, 29(11): 2354-2365.
[
|
[9] |
赵志刚, 余德, 韩成云, 等. 2008—2016年鄱阳湖生态经济区生态系统服务价值的时空变化. 长江流域资源与环境, 2017, 26(2): 198-208.
[
|
[10] |
谢高地, 张彩霞, 张雷明, 等. 基于单位面积价值当量因子的生态系统服务价值化方法改进. 自然资源学报, 2015, 30(8): 1243-1254.
[
|
[11] |
刘利花, 杨彬如. 中国省域耕地生态补偿研究. 中国人口·资源与环境, 2019, 29(2): 52-62.
[
|
[12] |
袁伟彦, 周小柯. 生态补偿效率问题研究述评. 生态经济, 2015, 31(7): 118-123, 139.
[
|
[13] |
姜翠红, 李广泳, 程滔, 等. 青海湖流域生态服务价值时空格局变化及其影响因子研究. 资源科学, 2016, 38(8): 1572-1584.
[
|
[14] |
严恩萍, 林辉, 王广兴, 等. 1990—2011年三峡库区生态系统服务价值演变及驱动力. 生态学报, 2014, 34(20): 5962-5973.
[
|
[15] |
姚小薇, 曾杰, 李旺君. 武汉城市圈城镇化与土地生态系统服务价值空间相关特征. 农业工程学报, 2015, 31(9): 249-256.
[
|
[16] |
邓伟, 周渝, 张勇, 等. 重庆市生态保护红线区生态系统服务价值时空演变特征及其驱动. 长江流域资源与环境, 2020, 29(1): 79-89.
[
|
[17] |
黄莘绒, 管卫华, 陈明星, 等. 长三角城市群城镇化与生态环境质量优化研究. 地理科学, 2021, 41(1): 64-73.
[
|
[18] |
孙克, 徐中民, 宋晓谕, 等. 人文因素对省域环境污染影响的空间异质性估计. 生态学报, 2017, 37(8): 2588-2599.
[
|
[19] |
孙克, 徐中民. 环境影响评价中人文因素作用的空间计量. 生态学报, 2009, 29(3): 1563-1570.
[
|
[20] |
|
[21] |
唐秀美, 郝星耀, 刘玉, 等. 生态系统服务价值驱动因素与空间异质性分析. 农业机械学报, 2016, 47(5): 336-342.
[
|
[22] |
耿甜伟, 陈海, 张行, 等. 基于GWR的陕西省生态系统服务价值时空演变特征及影响因素分析. 自然资源学报, 2020, 35(7): 1714-1727.
[
|
[23] |
陈彧, 李江风, 徐佳. 基于GWR的湖北省社会经济因素对生态服务价值的影响. 中国土地科学, 2015, 29(6): 89-96.
[
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
徐中民, 程国栋. 中国人口和富裕对环境的影响. 冰川冻土, 2005, 27(5): 767-773.
[
|
[29] |
苏方林. 省域R&D知识溢出的GWR实证分析. 数量经济技术经济研究, 2007, 24(2): 145-153.
[
|
[30] |
|
[31] |
|
[32] |
|
[33] |
陈鹏飞. 北纬18°以北中国陆地生态系统逐月净初级生产力1公里栅格数据集(1985—2015). 全球变化数据学报, 2019, 3(1): 34-41, 143-150.
[
|
[34] |
|
[35] |
|
[36] |
辛晓华, 吕拉昌. 中国主要城市技术创新影响环境污染的空间分异与机理. 地理科学, 2021, 41(1): 129-139.
[
|
[37] |
张协奎, 黄跃. 广西区域经济发展差异时空变化分析. 城市问题, 2014, (9): 65-70.
[
|
/
〈 |
|
〉 |