JOURNAL OF NATURAL RESOURCES >
Spatio-temporal variation of summer precipitation in China based on ENSO development process
Received date: 2021-01-11
Revised date: 2021-03-16
Online published: 2022-05-28
Copyright
Continuous global warming will bring more extreme precipitation events. Summer precipitation in China has obvious chronological changes, which is closely related to El Niño-Southern Oscillation. Thus, based on the gridded dataset of monthly precipitation with a spatial resolution of 0.5°×0.5° during 1961-2019, this paper analyzes the spatio-temporal variation of summer precipitation in the nine major basins of China using the trend analysis, t-test, and synthetic analysis. Based on seven ENSO events, the summer precipitation patterns were discussed. Results are shown as follows. (1) The summer precipitation increased significantly (p<0.05) in inland river basins such as Hexi Corridor, areas north and south of the Tianshan Mountains, and areas west of the Qinghai-Tibet Plateau, Southeast River drainage basins and the middle and lower reaches of the Yangtze River, while precipitation in both Haihe River Basin and Songliao River Basin decreased significantly during the period 1961-2019. (2) From the 1960s to the late 1990s, the precipitation fluctuations in the Yangtze and Huaihe River Basins increased, while that in the Haihe River Basin continued to decline, which was in line with the spatial characteristics of "Southern Floods and Northern Droughts". After 2000, except in the Huaihe River, and the summer precipitation in other river basins showed an increasing trend. (3) In the events dominated by El Niño, the ridge line of the Western Pacific Subtropical High (WPSH) extended westward, and the summer precipitation areas were concentrated in the Jianghuai area, showing a spatial pattern of three-pole-type from south to north, with more precipitation in Jianghuai Basin and less precipitation in the north of China and the Pearl River Basin in summer. In the events dominated by La Nina, the ridge line of the WPSH moved eastward and the control area narrowed. The summer precipitation obviously decreased on both sides of the "Hu Huanyong Line" and in South China. As for the two conversion ENSO events, when El Niño occurs in winter and La Nina changes in summer, the WPSH extends westward and its area expands, and there is more summer precipitation in China. On the contrary, the WPSH moves eastward and its area shrinks, resulting in less summer precipitation. This study highlighted that the spatio-temporal differentiation of ENSO events in the previous winter and summer, and analyses the abnormal laws of summer precipitation in the nine major basins in China, which has an important theoretical and practical significance to taking effective measures in regional flood prevention.
WANG Ting , LI Shuang-shuang , YAN Jun-ping , HE Jin-ping . Spatio-temporal variation of summer precipitation in China based on ENSO development process[J]. JOURNAL OF NATURAL RESOURCES, 2022 , 37(3) : 803 -815 . DOI: 10.31497/zrzyxb.20220316
表1 1961—2019年以来发生的不同发展型ENSO事件Table 1 The patterns of different development ENSO events from 1961 to 2019 |
类型 | 年份 |
---|---|
厄尔尼诺持续型 | 1987,2015 |
厄尔尼诺发展型 | 1963,1982,1991,1997,2002,2004 |
厄尔尼诺衰退型 | 1966,1969,1977,1978,1980,1983,1992,1995,2003,2005,2016,2019 |
拉尼娜持续型 | 1971,1974,1975,1985,1999,2000,2011 |
拉尼娜衰退型 | 1976,1984,1989,1996,2001,2006,2008,2012,2017,2018 |
厄尔尼诺—拉尼娜转换型 | 1964,1970,1973,1988,1998,2007,2010 |
拉尼娜—厄尔尼诺转换型 | 1965,1972,2009 |
表2 不同发展型ENSO事件下中国九大流域夏季降水异常Table 2 Summer precipitation anomalies in the nine major basins of China with different development ENSO events (mm) |
类型 | 松辽河 流域 | 内陆河 流域 | 海河流域 | 黄河 流域 | 淮河 流域 | 长江 流域 | 西南诸河 流域 | 东南诸河 流域 | 珠江 流域 |
---|---|---|---|---|---|---|---|---|---|
厄尔尼诺持续型 | -17.3 | -9.9 | -35.7 | -68.3 | 87.7 | 24.7 | -0.6 | 30.1 | -93.0 |
厄尔尼诺发展型 | -23.0 | 1.3 | -17.9 | -49.6 | 74.6 | 2.1 | 20.8 | 21.7 | -53.7 |
厄尔尼诺衰退型 | -13.7 | 1.9 | 7.4 | -13.4 | 33.4 | 6.1 | 1.4 | 13.8 | -65.7 |
拉尼娜持续型 | -32.4 | 6.8 | -18.4 | -38.4 | 58.6 | 1.7 | 22.5 | 41.7 | -91.8 |
拉尼娜衰退型 | -21.2 | 13.8 | 5.9 | -0.7 | 45.9 | 5.6 | 15.2 | 46.6 | 0.2 |
厄尔尼诺—拉尼娜 | -16.2 | 10.5 | 40.1 | 11.5 | 39.6 | 33.1 | 34.6 | -11.4 | -27.9 |
拉尼娜—厄尔尼诺 | -23.6 | -11.3 | -80.4 | -61.4 | 88.3 | -41.0 | -15.0 | 99.8 | -152.9 |
[1] |
中国气象局气候变化中心. 2020年中国气候变化蓝皮书. 北京: 科学出版社, 2020: 1-2.
[China Meteorological Administration Climate Change Center. Blue Book on Climate Change in China (2020). Beijing: Science Press, 2020: 1-2.]
|
[2] |
|
[3] |
尹占娥, 田鹏飞, 迟潇潇. 基于情景的1951—2011年中国极端降水风险评估. 地理学报, 2018,73(3):405-413.
[
|
[4] |
唐婷. 洪涝已致六千多万人次受灾主汛期防汛还需全力以赴. 科技日报, 2020-08-14 (04).
[
|
[5] |
|
[6] |
|
[7] |
|
[8] |
吕俊梅, 祝从文, 琚建华, 等. 近百年中国东部夏季降水年代际变化特征及其原因. 大气科学, 2014,38(4):782-794.
[
|
[9] |
陈文, 丁硕毅, 冯娟, 等. 不同类型ENSO对东亚季风的影响和机理研究进展. 大气科学, 2018,42(3):640-655.
[
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
李双双, 杨赛霓, 刘宪锋. 1960—2013年秦岭—淮河南北极端降水时空变化特征及其影响因素. 地理科学进展, 2015,34(3):354-363.
[
|
[16] |
闪丽洁, 张利平, 张艳军, 等. 长江中下游流域旱涝急转事件特征分析及其与ENSO的关系. 地理学报, 2018,73(1):25-40.
[
|
[17] |
郭政昇, 郑国璋, 曹富强, 等. ENSO事件对珠江中下游地区降水氢氧同位素的影响. 自然资源学报, 2019,34(11):2454-2468.
[
|
[18] |
尚程鹏, 章新平, 孙葭, 等. 洞庭湖流域冬季降水的时空变化及与全球海温的关系. 自然资源学报, 2018,33(11):1953-1965.
[
|
[19] |
孔锋. 中国不同强度降雨量的多属性时序变化特征及其对ENSO的响应. 长江流域资源与环境, 2020,29(6):1387-1400.
[
|
[20] |
徐华, 徐建军, 范伶俐. ENSO多样性研究进展. 热带气象学报, 2019,35(2):281-288.
[
|
[21] |
王黎娟, 蔡聪, 张海燕. 两类ENSO背景下中国东部夏季降水的环流特征及关键系统. 大气科学学报, 2020,43(4):617-629.
[
|
[22] |
滕宇威, 张文君, 刘超, 等. ENSO空间形态变异对ENSO-IOD关系年代际减弱的可能作用. 气象学报, 2020,78(2):210-220.
[
|
[23] |
|
[24] |
张人禾, 闵庆烨, 苏京志. 厄尔尼诺对东亚大气环流和中国降水年际变异的影响: 西北太平洋异常反气旋的作用. 中国科学: 地球科学, 2017,47(5):544-553.
[
|
[25] |
邓海军, 郭斌, 曹永强, 等. 1961—2016年中国昼夜降水变化的时空格局. 地理研究, 2020,39(10):2415-2426.
[
|
[26] |
|
[27] |
韩兰英, 张强, 姚玉璧, 等. 近60年中国西南地区干旱灾害规律与成因. 地理学报, 2014,69(5):632-639.
[
|
[28] |
史珩瑜, 张祖强, 任宏利. 近百年来ENSO强度的变化特征. 气候变化研究进展, 2017,13(1):1-10.
[
|
[29] |
刘田, 阳坤, 秦军, 等. 青藏高原中、东部气象站降水资料时间序列的构建与应用. 高原气象, 2018,37(6):1449-1457.
[
|
/
〈 |
|
〉 |