JOURNAL OF NATURAL RESOURCES >
Spatio-temporal distribution and network structure of red tourism flow in Jinggangshan
Received date: 2021-02-08
Request revised date: 2021-04-06
Online published: 2021-09-28
Copyright
Tourism flow is an important indicator of industrial operation of red tourism destination, which plays a significant guiding role for the planning and management of tourism destinations. Based on 1286 online travel notes of typical travel websites (2000-2020), this paper uses ArcGIS spatial analysis method and social network analysis method to examine the spatio-temporal distribution and network structure characteristics of Jinggangshan red tourism flow. Results show that: (1) Tourism flow in Jinggangshan has formed a double-core and multi-point spatial pattern with "Ciping-Huangyangjie" as the center, while the temporal distribution presents a periodic seasonal difference, which is closely related to climatic and phenological changes, holiday system and other factors. (2) Tourism flow network in Jinggangshan presents a "core-periphery" hierarchical structure, and forms a "Longshi-Dujuanshan" dense flow area in the northwest-southeast direction, in which the tourist flow between Huangyangjie, Longtan and Ciping is most frequent, occupying the core position of tourism distribution hub. Erling, Tongmuling, Xiangzhou and Xiankou occupy the peripheral position of tourism flow network. The reasons for this hierarchical structure are mainly related to tourism transportation, supporting facilities, tourism attractiveness, geographical location and other factors. (3) The 11 nodes (scenic spots) in Jinggangshan tourism flow network can be divided into three categories: diffusion type, balanced type and agglomeration type. Among them, Ciping is the only diffusion-type scenic spot, Longshi is the only agglomeration-type scenic spot, while Huangyangjie, Longtan, Zhufeng, Dujuanshan and Maoping belong to balanced-type scenic spots. Among all the flow paths between 11 nodes, "Ciping→Huangyangjie" and "Huangyangjie→Longtan" are the core routes in the tourism flow network. In order to further promote the development of Jinggangshan red tourism in the new period, this research puts forward the following suggestions: (1) Strengthening the exploration of the revolutionary history and the connotation of red culture in scenic spots, develop diversified theme tourism products in different seasons and the characteristics of holiday system, so as to attract the deep participation of different groups, and obtain the understanding of the red revolutionary spirit. (2) Improving infrastructure and tourism route planning, enhance the integration degree of peripheral scenic spots (nodes) in the tourism flow network, and create a more systematic and balanced tourism network. (3) Allocating red tourism resources and other economic and social elements rationally within Jinggangshan region, and strengthen the driving role of the agglomeration-type scenic spots and core routes in the tourism flow network, so as to realize the integration and coordinated development for Jinggangshan red tourism.
WANG Jin-wei , WANG Guo-quan , LIU Yi , LEI Ting , SUN Jie , WANG Xin . Spatio-temporal distribution and network structure of red tourism flow in Jinggangshan[J]. JOURNAL OF NATURAL RESOURCES, 2021 , 36(7) : 1777 -1791 . DOI: 10.31497/zrzyxb.20210711
表1 井冈山旅游流网络结构相关评价指标Table 1 Evaluation indexes of tourist flow network structure |
表2 井冈山11大景区等级划分(按照中心度)Table 2 Level classification of 11 major scenic spots (according to centrality) |
中心度 | 层级 | 目录(景区) |
---|---|---|
>300 | 中心景点 | 黄洋界、茨坪、龙潭 |
100~300 | 副中心景点 | 主峰、杜鹃山、茅坪 |
<100 | 一般性景点 | 龙市、桐木岭、鹅岭、仙口、湘洲 |
表3 基于扩散与集聚功能的井冈山主要景区分类Table 3 Classification of major scenic spots based on diffusion and agglomeration functions |
类型 | 扩散型 | 平衡型 | 集聚型 |
---|---|---|---|
Si | >20% | [-20%, 20%] | <-20% |
景点 | 茨坪 | 黄洋界、龙潭、主峰、杜鹃山、茅坪 | 龙市 |
图5 不同游客流量控制下井冈山景区间的流动网络Fig. 5 Networks within Jinggangshan scenic spots in different volume of tourist flow |
表4 不同流量阈值控制下的旅游流网络拓扑特征Table 4 Topological characteristic of tourist flow networks in different volume of flow |
流量阀值 | 节点数/个 | 路径数/条 | 网络密度 | 中心势 | 平均流量 | 流量占比/% |
---|---|---|---|---|---|---|
lij≥1 | 11 | 48 | 0.436 | 0.758 | 19.33 | 100 |
lij≥5 | 7 | 31 | 0.738 | 0.705 | 31.00 | 96.88 |
lij≥10 | 7 | 23 | 0.548 | 0.705 | 36.70 | 90.95 |
lij≥20 | 7 | 15 | 0.357 | 0.705 | 49.33 | 79.74 |
lij≥50 | 3 | 6 | 1.000 | 0.620 | 81.67 | 42.10 |
lij≥100 | 3 | 2 | 0.333 | 0.620 | 120 | 25.86 |
[1] |
方华国. 发展红色旅游是时代发展的需要. http://yuqing.people.com.cn/n/2015/0907/c210118-27551355.html, 2015-09-07.
[
|
[2] |
文化和旅游部. 今年红色旅游出游人数超1亿人次. https://baijiahao.baidu.com/s?id=1686317962775492991&wfr=spider&for=pc, 2020-12-17.
[Ministry of Culture and Tourism. Red tourists this year are more than 100 million. https://baijiahao.baidu.com/s?id=1686317962775492991&wfr=spider&for=pc, 2020-12-17. ]
|
[3] |
江西省人民政府. 2020中国红色旅游博览会开幕: 许达哲乌兰出席. http://www.jiangxi.gov.cn/art/2020/11/15/art_393_2894804.html, 2020-11-15.
[People's Government of Jiangxi Province. The opening of China Red Tourism Expo 2020: XU Dazhe and WU Lan were present. http://www.jiangxi.gov.cn/art/2020/11/15/art_393_2894804.html, 2020-11-15. ]
|
[4] |
湖南省人民政府. 红色旅游加速脱贫攻坚: 湖南发展红色旅游综述之二. http://www.hunan.gov.cn/hnyw/zwdt/202011/t20201113_13957937.html, 2020-11-13.
[People's Government of Hunan Province. Red tourism accelerates the fight against poverty: The summary of Hunan's development of red tourism (Ⅱ). http://www.hunan.gov.cn/hnyw/zwdt/202011/t20201113_13957937.html, 2020-11-13. ]
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
李文明. 试论庐山的红色旅游开发. 江西财经大学学报, 2005,(14):64-66.
[
|
[13] |
余凤龙, 陆林. 红色旅游开发的问题诊断及对策: 兼论井冈山红色旅游开发的启示. 旅游学刊, 2005, 20(4):56-61.
[
|
[14] |
张羽, 刘妮. 延安清凉山红色旅游发展的战略思考. 人文地理, 2009, 24(1):119-122, 80.
[
|
[15] |
阎友兵, 方世敏, 尚斌. 湖南红色旅游发展的战略思考. 经济地理, 2007, 27(5):867-872.
[
|
[16] |
朱东国. 大学生红色旅游消费行为及其营销策略. 湘潭大学学报: 哲学社会科学版, 2010, 34(5):37-40.
[
|
[17] |
|
[18] |
周美静, 许春晓. 红色旅游共生发育水平测评指标体系构建与应用: 以韶山为例. 旅游学刊, 2019, 34(9):127-144.
[
|
[19] |
许春晓. 红色旅游的业态群落发育研究. 商业经济与管理, 2014,(15):51-59.
[
|
[20] |
曹月娟. 红色文化旅游游客服务质量感知对行为意愿的影响研究. 旅游科学, 2020, 34(3):94-102.
[
|
[21] |
阎友兵, 郭亮宏. 基于网络文本的红色旅游游客情感特征研究: 以韶山风景名胜区为例. 湘潭大学学报: 哲学社会科学版, 2020, 44(3):131-136.
[
|
[22] |
郑华伟. 红色旅游价值观内化的网络文本研究: 兼论国民幸福感的生成机制. 旅游学刊, 2016, 31(5):111-118.
[
|
[23] |
|
[24] |
|
[25] |
张继军, 席军良. 红色旅游景区与区域治理一体化: 基于王家坪社区“三区联动”的考察. 社会科学家, 2019,(110):84-89.
[
|
[26] |
李文明, 敖琼, 殷程强, 等. 韶山红色旅游地游客亲环境行为的驱动因素与影响机理. 经济地理, 2020, 40(11):233-240.
[
|
[27] |
高楠, 张新成, 王琳艳. 中国红色旅游网络关注度时空特征及影响因素. 自然资源学报, 2020, 35(5):1068-1089.
[
|
[28] |
杨姗姗, 任冬梅, 贾菲. 空间计量理论与应用研究综述. 统计与决策, 2020, 36(6):39-42.
[
|
[29] |
许春晓, 黎巧. 长株潭红色旅游共生发展的空间特征. 旅游科学, 2015, 29(2):14-27.
[
|
[30] |
唐顺铁, 郭来喜. 旅游流体系研究. 旅游学刊, 1998, 13(3):38-41.
[
|
[31] |
|
[32] |
戢晓峰, 戈艺澄, 陈方. 基于公路交通流大数据的节假日旅游流时空分异特征: 以云南省2017年7个节假日为例. 旅游学刊, 2019, 34(6):37-47.
[
|
[33] |
戴文, 丁蕾, 吴晨, 等. 基于大数据的旅游流时空分布特征研究: 以南京市为例. 现代城市研究, 2019,(12):38-44, 53.
[
|
[34] |
王永明, 马耀峰, 王美霞. 中国入境游客多城市旅游空间网络结构. 地理科学进展, 2012, 31(4):518-526.
[
|
[35] |
闫闪闪, 靳诚. 洛阳城区旅游流空间网络结构特征. 地理科学, 2019, 39(10):1602-1611.
[
|
[36] |
王永明, 王美霞, 吴殿廷, 等. 基于ZINB模型的中国省域间入境旅游流影响因素. 经济地理, 2018, 38(11):234-240.
[
|
[37] |
姚云霞, 管卫华, 李在军. 江苏省入境旅游流的时空演变及影响因素分析. 旅游科学, 2016, 30(5):52-62.
[
|
[38] |
阮文奇, 张舒宁, 李勇泉. 自然灾害事件下景区风险管理: 危机信息流扩散与旅游流响应. 南开管理评论, 2020, 23(2):63-74.
[
|
[39] |
徐敏, 黄震方, 曹芳东, 等. 基于在线预订数据分析的旅游流网络结构特征与影响因素: 以长三角地区为例. 经济地理, 2018, 38(6):193-202.
[
|
[40] |
周李, 吴殿廷, 虞虎, 等. 基于网络游记的城市旅游流网络结构演化研究: 以北京市为例. 地理科学, 2020, 40(2):298-307.
[
|
[41] |
卢淑莹, 黄鑫, 陶卓民. 基于地理标记照片的入境游客空间特征与移动轨迹: 以南京市为例. 自然资源学报, 2021, 36(2):315-326.
[
|
[42] |
陈晓艳, 张子昂, 胡小海, 等. 微博签到大数据中旅游景区客流波动特征分析: 以南京市钟山风景名胜区为例. 经济地理, 2018, 38(9):206-214.
[
|
[43] |
蔚海燕, 戴泽钒, 许鑫, 等. 上海迪士尼对上海旅游流网络的影响研究: 基于驴妈妈游客数字足迹的视角. 旅游学刊, 2018, 33(4):33-45.
[
|
[44] |
刘大均. 长江中游城市群旅游流空间格局及发展模式. 经济地理, 2018, 38(5):217-223.
[
|
[45] |
张春晖, 马耀峰, 吴晶, 等. 供需视角下西部入境旅游流与目的地耦合协调度及其时空分异研究. 经济地理, 2013, 33(10):174-181.
[
|
[46] |
马丽君, 肖洋. 湖南省居民省内旅游流的集聚扩散时空特征: 基于网络关注度数据的分析. 旅游导刊, 2018, 2(2):40-55.
[
|
[47] |
沈振剑. 河南省旅游流时空变化的预测及发展趋势. 经济经纬, 2005,(14):120-122.
[
|
[48] |
王朝辉, 汤陈松, 乔浩浩, 等. 基于数字足迹的乡村旅游流空间结构特征: 以浙江省湖州市为例. 经济地理, 2020, 40(3):225-233, 240.
[
|
[49] |
卢松, 吉慧, 蔡云峰. 黄山市自驾车入游流旅行空间行为研究. 地理研究, 2013, 32(1):179-190.
[
|
[50] |
任瑞萍. 五台山风景名胜区旅游流空间结构研究. 山地学报, 2020, 38(3):461-472.
[
|
[51] |
方世敏, 赵金金. 基于齐夫定律的红色旅游景区旅游流扩散研究: 以延安为例. 延安大学学报: 社会科学版, 2010, 32(1):67-74.
[
|
[52] |
郑晓江. 井冈山红色旅游流网络空间结构及优化研究. 南昌: 江西财经大学, 2020.
[
|
[53] |
吉安市文化广电新闻出版旅游局. 吉安市景区名录: 井冈山. http://wgxl.jian.gov.cn/news-show-2600.html, 2015-01-01.
[Ji'an Bureau of Culture, Radio, TV, News, Publishing and Tourism. Ji'an Scenic Spot Directory: Jinggang Mountain. http://wgxl.jian.gov.cn/news-show-2600.html, 2015-01-01. ]
|
[54] |
吉安市政府办. 井冈山景区旅游收入稳定增长. http://m.jian.gov.cn/news-show-46956.html, 2019-09-10.
[Government Office of Ji'an. Jinggangshan Scenic Area tourism revenue increased steadily. http://m.jian.gov.cn/news-show-46956.html, 2019-09-10. ]
|
[55] |
王新越, 曹婵婵. 基于网络游记的青岛市国内旅游客源市场结构与旅游流时空特征分析. 地理科学, 2019, 39(12):1919-1928.
[
|
[56] |
吴忠才, 柳思维. 多源时空大数据视角的城市商圈空间结构及影响因素研究: 基于核密度与空间面板模型的实证. 经济问题, 2018,(19):113-119.
[
|
[57] |
荣慧芳, 陶卓民. 基于网络数据的乡村旅游热点识别及成因分析: 以江苏省为例. 自然资源学报, 2020, 35(12):2848-2861.
[
|
[58] |
李江苏, 王晓蕊, 李小建. 中国传统村落空间分布特征与影响因素分析. 经济地理, 2020, 40(2):143-153.
[
|
[59] |
靳诚, 徐菁, 黄震方, 等. 南京城市内部景点间游客流动特征分析. 地理学报, 2014, 69(12):1858-1870.
[
|
[60] |
李文兵, 余柳仪, 吴忠才. 整体网视角下传统村落旅游地咨询网络结构与社区权力分异: 以湖南张谷英村为例. 旅游科学, 2020, 34(1):54-70.
[
|
[61] |
刘军. 整体网分析讲义: UCINET软件实用指南. 上海: 格致出版社, 上海人民出版社, 2009: 98-99.
[
|
[62] |
林文辉, 毛峰, 何虹, 等. 杭州市景点旅游流空间网络分析. 浙江大学学报: 理学版, 2016, 43(4):458-464, 491.
[
|
[63] |
麻学锋, 杨雪. 大湘西高级别景区时空分布特征及影响因素的空间异质性. 自然资源学报, 2019, 34(9):1902-1916.
[
|
[64] |
方叶林, 黄震方, 李经龙, 等. 中国特色小镇的空间分布及其产业特征. 自然资源学报, 2019, 34(6):1273-1284.
[
|
/
〈 |
|
〉 |