JOURNAL OF NATURAL RESOURCES >
The de-coal process and its driving forces in Beijing
Received date: 2020-02-01
Request revised date: 2020-06-15
Online published: 2021-01-28
Copyright
De-coal process has been not only the significant energy transition path, but also the key result of that. After more than 20 years of efforts, coal consumption in Beijing has been effectively controlled. This study systematically analyzed the dynamic changes of coal consumption in Beijing from 1995 to 2017 and used the LMDI method to decompose the changes in coal consumption from 2005 to 2017. The results showed that: (1) Coal consumption began to decline in 2005, reaching 3.5 million tce in 2017 or a decrease of 84%, which means that the effect of de-coal process was remarkable. (2) In terms of driving factors, except the economic scale effect, the other three drivers had negative effects on the growth of coal consumption. In the early stage of de-coal process, economic structure adjustment played an important role in curbing coal consumption, and the change of energy structure drove the later de-coal process. (3) From the perspective of different sectors, the improvements of energy intensity and energy structure in the sector of electricity and hot water production and supply, and the relocation of metallurgy were the main contributor to the decline of coal consumption in Beijing. (4) Beijing's de-coal process had some reference values for other cities in China, but it cannot be blindly copied because of its own special characteristics.
Key words: energy transition; de-coal; LMDI; driving force
YANG Min , ZHANG Peng-peng , ZHANG Li-xiao , HAO Yan . The de-coal process and its driving forces in Beijing[J]. JOURNAL OF NATURAL RESOURCES, 2020 , 35(11) : 2783 -2792 . DOI: 10.31497/zrzyxb.20201117
[1] |
赵珊. 中国煤炭资源现状及建议. 广州化工, 2014,42(15):52-53.
[
|
[2] |
冯博, 王雪青. 考虑雾霾效应的京津冀地区能源效率实证研究. 干旱区资源与环境, 2015,29(10):1-7.
[
|
[3] |
章轲. 专家解读三年行动计划正研究制定全国运输结构调整方案. https://www.yicai.com/news/5436883.html, 2018-07-05.
[
|
[4] |
|
[5] |
|
[6] |
|
[7] |
舟丹. 全球第三次能源转型的特征. 中外能源, 2017,22(9):89.
[
|
[8] |
|
[9] |
世界能源理事会. 全球能源转型(2014). https://www.atkearney.com/documents/10192/5293225/Global+Energy+Transitions, 2018-08-01.
[ World Energy Council. Global energy transition (2014). https://www.atkearney.com/documents/10192/5293225/Global+Energy+Transitions, 2018-08-01.]
|
[10] |
吴磊, 詹红兵. 国际能源转型与中国能源革命. 云南大学学报: 社会科学版, 2018,17(3):116-127.
[
|
[11] |
刘坚, 任东明. 欧盟能源转型的路径及对我国的启示. 中国能源, 2013,35(12):8-11.
[
|
[12] |
孙宁鸿,
[
|
[13] |
朱彤. 德国与美国当前能源转型进程比较分析. 国际石油经济, 2016,24(5):9-16.
[
|
[14] |
|
[15] |
|
[16] |
李新运, 吴学锰, 马俏俏. 我国行业碳排放量测算及影响因素的结构分解分析. 统计研究, 2014,31(1):56-62.
[
|
[17] |
关军, 蒋立红, 张智慧. 我国建筑业物化能增长的结构分解分析. 环境科学研究, 2016,29(11):1718-1724.
[
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
崔盼盼, 张艳平, 张丽君, 等. 中国省域隐含碳排放及其驱动机理时空演变分析. 自然资源学报, 2018,33(5):879-892.
[
|
[25] |
李兰兰, 徐婷婷, 李方一, 等. 中国居民天然气消费重心迁移路径及增长动因分解. 自然资源学报, 2017,32(4):606-619.
[
|
[26] |
孙倩, 汪鹏, 蔡国田, 等. 基于LMDI的城市能源消费总量指标评价模型研究. 生态经济, 2019,35(6):98-105.
[
|
[27] |
李慧芳, 聂锐. 中国能耗变动影响因素的LMDI分解. 统计与决策, 2018,34(13):135-138.
[
|
[28] |
北京市人民政府. 北京市人民政府关于印发北京市2013—2017年清洁空气行动计划的通知. http://www.beijing.gov.cn/zhengce/zfwj/zfwj/szfwj/201905/t20190523_72673.html, 2013-09-12.
[ The People's Government of Beijing Municipality. Notice of the Beijing municipal people's government on the issuance of the clean air action plan for Beijing from 2013 to 2017. http://www.beijing.gov.cn/zhengce/zfwj/zfwj/szfwj/201905/t20190523_72673.html, 2013-09-12.]
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
张伟, 张金锁, 孙再罗. 基于LMDI指数分析的中国煤炭消费增长分解研究. 中国矿业, 2014,23(8):42-45.
[
|
[35] |
章景皓. 基于能流图和LMDI的区域能源消费分解方法及案例研究. 北京: 清华大学, 2015.
[
|
/
〈 |
|
〉 |