JOURNAL OF NATURAL RESOURCES >
Evolving characteristics and driving mechanism of coal consumption in ChinaBased on the perspective of supply and demand
Received date: 2020-02-10
Request revised date: 2020-06-30
Online published: 2021-01-28
Copyright
China has been the world's largest energy consumer and carbon dioxide emitter. The evolution trend of China's coal consumption and its driving mechanism have always been a topic of concern to researchers and policy makers. Taking China's total coal consumption of 2.8 billion tons of standard coal in 2013 as the key time point, a comparative analysis of the differences in the dynamics of coal consumption mechanisms has been conducted. An extended LMDI model based on the classical IPAT identity and an input output-structural decomposition analysis (IO-SDA) model were adopted to determine the main driving factors for coal consumption in China. The impacts and influences of various factors on coal consumption were different in different development stages. China's coal consumption was mainly driven by the effects of economic growth, energy intensity, industrial structure and energy structure. The slowdown in GDP growth since the economy entered the "New Normal", the in-depth adjustment of the industrial structure and energy structure, and the continuous decline in energy consumption intensity were the key to the decline in total coal consumption since 2013. Based on the demand-side structural decomposition analysis, China's coal consumption was mainly affected by capital formation, exports, and urban household consumption. The embodied coal consumption of Chinese exports has peaked after the global financial crisis in 2007. Coal consumption induced by urban household consumption surpassed export-induced coal consumption in 2017, which became the second largest demand-side driver of China's total coal consumption growth. Based on the perspective of final demand, coal consumption by sectoral industry performed a changing feature of "driven by exports→driven by capital formation→driven by urban household consumption". The industry's coal resource dependence has gradually decreased. China's total coal consumption has entered a peak stage with the maximum value appearing in 2013.
Key words: coal consumption; LMDI; IO-SDA; China
WANG Chang-jian , WANG Fei , YE Yu-yao , ZHANG Xin-lin , SU Yong-xian , JIANG Lu , LI Zeng , ZHANG Hong-ou . Evolving characteristics and driving mechanism of coal consumption in ChinaBased on the perspective of supply and demand[J]. JOURNAL OF NATURAL RESOURCES, 2020 , 35(11) : 2708 -2723 . DOI: 10.31497/zrzyxb.20201112
表1 中国23部门投入产出行业分类表Table 1 China's 23 sector input-output table |
代码 | 产业 | 代码 | 产业 |
---|---|---|---|
1 | 农、林、牧、渔业 | 13 | 交通运输设备制造业 |
2 | 采掘业 | 14 | 电气机械及器材制造业 |
3 | 食品加工制造及烟草加工业 | 15 | 电子及通信设备制造业 |
4 | 纺织服装业 | 16 | 其他制造业 |
5 | 木材及家具制造业 | 17 | 电力、热力的生产和供应业 |
6 | 造纸及文教用品制造业 | 18 | 煤气的生产和供应业 |
7 | 石油加工及炼焦业 | 19 | 自来水的生产和供应业 |
8 | 化学工业 | 20 | 建筑业 |
9 | 非金属矿物制品业 | 21 | 交通运输、仓储和邮政业 |
10 | 金属冶炼及压延加工业 | 22 | 批发、零售业和住宿、餐饮业 |
11 | 金属制品业 | 23 | 其他行业 |
12 | 通用、专用设备制造业 |
表2 中国煤炭消费关键影响因素的分阶段指数分解分析Table 2 Index decomposition analysis of key influencing factors of coal consumption in China in different periods (万tce) |
年份 | p | g | f1 | f2 | f3 | △C |
---|---|---|---|---|---|---|
2002—2007 | 4650.52 | 86301.81 | -454.14 | 8487.76 | 32.19 | 109635.21 |
2007—2010 | 3499.15 | 63723.23 | -131.88 | -2321.14 | 80.87 | 23772.97 |
2010—2013 | 3885.95 | 60209.91 | -90.75 | -12715.38 | 249.75 | 31430.95 |
2013—2017 | 5889.26 | 68248.44 | -288.39 | -23137.60 | 487.03 | -10087.85 |
时段/年 | e1 | e2 | e3 | s1 | s2 | s3 |
2002—2007 | -60.35 | 7489.70 | -70.76 | 186.39 | 4511.78 | -1439.68 |
2007—2010 | -873.23 | -29715.18 | -333.24 | -183.98 | -11075.96 | 1104.32 |
2010—2013 | -92.16 | -17909.64 | -392.75 | -126.44 | -1253.49 | -334.04 |
2013—2017 | 2.98 | -44861.87 | -769.49 | 416.51 | -16087.36 | 12.65 |
[1] |
|
[2] |
杨宇, 刘毅. 世界能源地理研究进展及学科发展展望. 地理科学进展, 2013,32(5):818-830.
[
|
[3] |
BP. Statistical Review of World Energy. 2019.
|
[4] |
杨宇, 王礼茂, 江东, 等. 美国对伊朗石油禁运与全球能源安全. 地理研究, 2018,37(10):1879-1898.
[
|
[5] |
中华人民共和国国家统计局. 中国统计年鉴. 2019.
[ National Bureau of Statistcs of China. China Statistical Yearbook. 2019.]
|
[6] |
石敏俊, 黄文, 李娜. 资源优势能否转化为产业优势: 煤炭开发重心西移对能源密集型产业空间格局变化的影响. 自然资源学报, 2015,30(6):891-902.
[
|
[7] |
朱孟珏, 庄大昌, 李涛. 1990—2014年中国煤炭运输网络的时空特征研究. 自然资源学报, 2018,33(3):454-466.
[
|
[8] |
|
[9] |
柳君波, 高俊莲, 徐向阳. 中国煤炭供应行业格局优化及排放. 自然资源学报, 2019,34(3):473-486.
[
|
[10] |
|
[11] |
林伯强, 吴微. 中国现阶段经济发展中的煤炭需求. 中国社会科学, 2018, (2): 141-161, 207-208.
[
|
[12] |
|
[13] |
|
[14] |
林伯强, 李江龙. 环境治理约束下的中国能源结构转变: 基于煤炭和二氧化碳峰值的分析. 中国社会科学, 2015, (9):84-107, 205.
[
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
王长建, 汪菲, 张虹鸥. 新疆能源消费碳排放过程及其影响因素: 基于扩展的Kaya恒等式. 生态学报, 2016,36(8):2151-2163.
[
|
[21] |
何则, 杨宇, 宋周莺, 等. 中国能源消费与经济增长的相互演进态势及驱动因素. 地理研究, 2018,37(8):1528-1540.
[
|
[22] |
王长建, 张小雷, 张虹鸥, 等. 基于IO-SDA模型的新疆能源消费碳排放影响机理分析. 地理学报, 2016,71(7):1105-1118.
[
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
贺灿飞, 王俊松. 经济转型与中国省区能源强度研究. 地理科学, 2009,29(4):461-469.
[
|
[29] |
刘卫东, 唐志鹏, 夏炎, 等. 中国碳强度关键影响因子的机器学习识别及其演进. 地理学报, 2019,74(12):2592-2603.
[
|
[30] |
陆大道. 中速增长: 中国经济的可持续发展. 地理科学, 2015,35(10):1207-1219.
[
|
[31] |
|
[32] |
|
[33] |
贺灿飞, 陈航航. 参与全球生产网络与中国出口产品升级. 地理学报, 2017,72(8):1331-1346.
[
|
[34] |
|
[35] |
|
[36] |
IEA. Global Energy & CO2 Status Report 2018: The latest trends in energy and emissions in 2018. 2019.
|
/
〈 |
|
〉 |