JOURNAL OF NATURAL RESOURCES >
A study of winter rape extraction at sub-pixel fusing multi-source data based on Artificial Neural Networks:A case study of Jianghan and Dongting Lake Plain
Received date: 2018-08-01
Request revised date: 2019-01-24
Online published: 2019-05-28
Copyright
Rape is the fifth largest crop type and an important oil crop in China. Obtaining the distribution information of rape is of great significance to the development of edible oil market and food security. Jianghan and Dongting Lake Plain are important production bases of grain, cotton and edible oil in China. The crop rotation and intercropping are very common due to the fragmented cropland fields and diversity of landscape. Traditional remote sensing monitoring methods are difficult to assess the spatial distribution and interannual variation of planting areas. In this paper, an Artificial Neural Network-based method for extracting winter rape from sub-pixels was proposed, and the MODIS and GF-1 high resolution data were combined to obtain winter rape abundance on the JPDLP. First, the Sequential Forward Selection algorithm was used to select phenological feature from the MODIS time series dataset. Then an ANN model fusing multi-source data was built to estimate winter rape abundance. The results showed that the distribution information of winter rape obtained by this method has high accuracy (the extraction accuracies of ANN modeled versus GF-1 and census data were 91.54% and 74.70%, respectively). This method showed that there is a great potential in the large-scale winter rape mapping using coarse resolution images. The results of this paper can provide technical methods for the spatial pattern evolution and spatial-temporal dynamics analysis of winter rape in China.
LIU Wen-bin , TAO Jian-bin , XU Meng , CHEN Rui-qing , GUO Yang . A study of winter rape extraction at sub-pixel fusing multi-source data based on Artificial Neural Networks:A case study of Jianghan and Dongting Lake Plain[J]. JOURNAL OF NATURAL RESOURCES, 2019 , 34(5) : 1079 -1092 . DOI: 10.31497/zrzyxb.20190514
Fig. 1 The location of the study area and the main land-cover types (GL30-2010)图1 研究区地理位置和主要地物覆盖类型(GL30-2010) |
Table 1 The information about the datasets表1 主要数据集信息 |
数据类型 | 日期 | 空间分辨率/m | 云覆盖/% |
---|---|---|---|
MOD13Q1 | 2014年10月至2015年6月 | 250 | — |
GF-1 WFV3 | 2015年3月21日 | 16 | 1 |
GL30-2010 | 2010年 | 30 | — |
Google Earth | 2015.3.25 | 1 | / |
Table 2 Phenological periods of main winter crops on the Jianghan and Dongting Lake Plain表2 两湖平原主要冬季作物物候期 |
10月 | 11月 | 12月 | 次年1月 | 2月 | 3月 | 4月 | 5月 | 6月 | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
上 | 中 | 下 | 上 | 中 | 下 | 上 | 中 | 下 | 上 | 中 | 下 | 上 | 中 | 下 | 上 | 中 | 下 | 上 | 中 | 下 | 上 | 中 | 下 | 上 | 中 | |
儒略日 | 273~289 | 305~321 | 337~353 | 001~017 | 033~049 | 065~081 | 097~113 | 129~145 | 161 | |||||||||||||||||
冬油菜 | 播种 | 育苗期 | 开盘期 | 蕾苔期 | 开花期 | 角果期 | 成熟期 | 收获 | ||||||||||||||||||
冬小麦 | 播种 | 育苗期 | 分蘖期 | 拔节期 | 抽穗期 | 成熟期 | 收获 |
Fig. 2 Spatial distribution of winter rape samples图2 冬油菜样本的空间分布 |
Fig. 3 The preparation of winter rape abundance of samples图3 制作冬油菜样本的丰度图像 |
Fig. 4 Procedure of feature selection using SFS algorithm图4 使用SFS算法进行特征选择 |
Fig. 5 The topology of back propagation neural network图5 BP神经网络的拓扑结构 |
Fig. 6 Result of feature selection by SFS图6 SFS特征选择结果 |
Fig. 7 EVI profiles of winter crops图7 冬油菜和冬小麦的时间序列EVI均值曲线 |
Fig. 8 Abundance map of winter rape on the Jianghan and Dongting Lake Plain estimated by ANN in 2015图8 2015年基于ANN提取的两湖平原冬油菜丰度 |
Table 3 The confusion matrix of winter rape samples表3 样本的混淆矩阵 |
类别 | Google Earth | |||
---|---|---|---|---|
冬油菜 | 其他 | 总数 | 用户精度/% | |
冬油菜 | 314 | 23 | 337 | 98.88 |
其他 | 6 | 532 | 538 | 93.18 |
总数 | 320 | 555 | 875 | — |
生产者精度/% | 98.13 | 95.86 | — | — |
Fig. 9 Spatial distribution of truth ground plots图9 真值点的空间分布 |
Fig. 10 Comparison of the winter rape spatial distributions图10 冬油菜空间分布对比 |
Fig. 11 Error comparison of winter rape abundance extracted by ANN and GF-1 image in 2015图11 2015年基于ANN和GF-1获取的冬油菜丰度在各丰度区间的误差比较 |
Fig. 12 Linear regressions and relative error for the county-based validation of the winter rape area estimated by ANN and census data in 2015图12 2015年基于ANN估算的冬油菜面积和统计数据在县级的线性回归及相对误差 |
Fig. 13 The spatial distribution of the difference for estimated winter rape area on the Jianghan and Dongting Lake Plain in 2015图13 2015年两湖平原各县市冬油菜估算面积差异的空间分布 |
[1] |
|
[2] |
|
[3] |
|
[4] |
[
|
[5] |
[
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
[
|
[11] |
|
[12] |
|
[13] |
|
[14] |
[
|
[15] |
[
|
[16] |
[
|
[17] |
[
|
[18] |
[
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2016.
[
|
[25] |
湖北省统计局. 湖北农村统计年鉴. 北京: 中国统计出版社, 2016.
[Hubei Provincial Bureau of Statistics. Hubei Rural Statistical Yearbook 2016. Beijing: Hubei Rural Statistical Yearbook, 2016.]
|
[26] |
湖南省统计局.湖南农村统计年鉴. 北京: 中国统计出版社, 2016.
[Hunan Provincial Bureau of Statistics. Hunan Rural Statistical Yearbook 2016. Beijing: Hunan Rural Statistical Yearbook, 2016.]
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
[
|
[33] |
|
[34] |
|
[35] |
[
|
[36] |
[
|
/
〈 |
|
〉 |