Early-warning of Urban Vulnerability in Tangshan CityBased on Variable Weight Model

Expand
  • School of Information Engineering, China University of Geosciences, Beijing 100083, China

Received date: 2015-12-02

  Revised date: 2016-04-15

  Online published: 2016-11-20

Supported by

International S & T Cooperation Program of China, No.2015DFA01370

Abstract

At present, cities in China face highly and rapidly increasing exposure to risks of resource, environment, society and economy, calling for effective countermeasures to solve the problem. Urban vulnerability reflects the ability of city system to resist the disturbances from resources, ecological environment, economic and social development, and other internal and external factors. When the ability to resist disturbance is lower than a certain threshold value, the city will be vulnerable. Urban vulnerability evaluation and early-warning is an important content of urban vulnerability research. The paper selected Tangshan City as the study region, and constructed an urban vulnerability evaluation and early-warning index system by employing “Ecology-Environment-Economy-Society” (EEES) framework. It introduced the variable weight to estimate the early-warning level of urban vulnerability of Tangshan City from 2000 to 2014. And the Grey System GM (1,1) forecast model was used to predict the urban vulnerability trend of the city from 2015 to 2020. The results indicated that the variable weight model could meet needs of urban vulnerability evaluation and early-warning. The level of urban vulnerability showed an upward trend in Tangshan City during the past 15 years, the index growing from 0.449 to 0.716, the warning degree descending from “serious alert” to “light alert”, and the indicator lamp turning from “orange light” to “blue light”. From 2015 to 2020, the urban vulnerability warning level is predicated to turn from the “light alarm” to “no alert”, and the lamp will turn from “blue light” into “green light”. However, the urban vulnerability situation is still not optimistic. We still need to take precautionary measures to prevent vulnerability risk. These findings could provide scientific basis for the urban vulnerability assessment, and provide policy support for the improvement of the urban vulnerability of Tangshan.

Cite this article

ZHANG Lu-lu, ZHENG Xin-qi, ZHANG Chun-xiao, LÜ Yong-qiang . Early-warning of Urban Vulnerability in Tangshan CityBased on Variable Weight Model[J]. JOURNAL OF NATURAL RESOURCES, 2016 , 31(11) : 1858 -1870 . DOI: 10.11849/zrzyxb.20151333

References

[1] 叶玉瑶, 苏泳娴, 张虹鸥, 等. 生态阻力面模型构建及其在城市扩展模拟中的应用 [J]. 地理学报, 2014, 69(4): 485-496.

[2] 方创琳, 王岩. 中国城市脆弱性的综合测度与空间分异特征 [J]. 地理学报, 2015, 70(2): 234-247.

[3] 赵林, 王维, 张宇硕, 等. 东北振兴以来东北地区城市脆弱性时空格局演变 [J]. 经济地理, 2014, 34(12): 69-77.

[4] 袁海红, 牛方曲, 高晓路. 城市经济脆弱性模拟评估系统的构建及其应用 [J]. 地理学报, 2015, 70(2): 271-282.

[5] 王岩, 方创琳. 大庆市城市脆弱性综合评价与动态演变研究 [J]. 地理科学, 2014, 34(5): 547-555.

[6] 苏飞, 陈媛, 张平宇. 基于集对分析的旅游城市经济系统脆弱性评价——以舟山市为例 [J]. 地理科学, 2013, 33(5): 538-544.

[7] 程钰, 任建兰, 徐成龙. 资源衰退型城市人地系统脆弱性评估——以山东枣庄市为例 [J]. 经济地理, 2015, 35(3): 87-93.

[8] 袁海红, 高晓路. 城市经济脆弱性评价研究——以北京海淀区为例 [J]. 自然资源学报, 2014, 29(7): 1159-1172.

[9] 苏飞, 张平宇. 石油城市经济系统脆弱性评价——以大庆市为例 [J]. 自然资源学报, 2009, 24(7): 1267-1274.

[10] 李博, 杨智, 苏飞. 基于集对分析的大连市人海经济系统脆弱性测度 [J]. 地理研究, 2015, 34(5): 967-976.

[11] HUFSCHMIDT G. A comparative analysis of several vulnerability concepts [J]. Natural Hazards, 2011, 58(2): 621-643.
[12] MCCARTHY J J, CANZIANI O F, LEARY N A, et al. IPCC Climate Change 2001: Impacts, Adaptation, and Vulnerability [M]. Contribution of Working Group II to the Third Assessment Report. Cambridge University Press, 2001: 81-111.
[13] 孙平军, 修春亮, 王忠芝. 基于PSE模型的矿业城市生态脆弱性的变化研究——以辽宁阜新为例 [J]. 经济地理, 2010, 30(8): 1354-1359.

[14] 李博, 佟连军, 韩增林. 东北地区煤炭城市脆弱性与可持续发展模式 [J]. 地理研究, 2010, 29(2): 361-372.

[15] KATES R W, AUSUBEL J H, BERBERIAN M. Climate Impact Assessment: Studies of the Interaction of Climate and Society [M]. John Wiley and Sons, Inc., 1985.
[16] TURNER B L, KASPERSON R E, MATSON P A, et al. A framework for vulnerability analysis in sustainability science [J]. Proceeddings of the National Academy of Sciences of the United States of America, 2003, 100(14): 8074-8079.
[17] 史兴民, 韩申山, 安鹏飞, 等. 中西部典型资源型城市环境脆弱性评价 [J]. 地域研究与开发, 2010, 29(6): 63-68.

[18] 那伟, 刘继生. 辽源市经济系统的脆弱性及其规避措施研究 [J]. 地理科学, 2009, 29(5): 666-672.

[19] 李锋, 万年庆, 史本林, 等. 基于“环境-结构”集成视角的旅游产业脆弱性测度——以中国大陆31个省区市为例 [J]. 地理研究, 2014, 33(3): 569-581.

[20] CHANG L F, HUANG S L. Assessing urban flooding vulnerability with an emergy approach [J]. Landscape and Urban Planning, 2015, 143: 11-24.
[21] 喻忠磊, 杨新军, 石育中. 关中地区城市干旱脆弱性评价 [J]. 资源科学, 2012, 34(3): 581-588.

[22] 韩瑞玲, 佟连军, 佟伟铭, 等. 基于集对分析的鞍山市人地系统脆弱性评估 [J]. 地理科学进展, 2012, 31(3): 344-352.

[23] 张晓瑞, 张琳雅, 方创琳. 概念、框架和测度:城市脆弱性研究脉络评述及其拓展 [J]. 地理与地理信息科学, 2015, 31(4): 94-99.

[24] 商彦蕊. 灾害脆弱性概念模型综述 [J]. 灾害学, 2013, 28(1): 112-116.

[25] 李鹤, 张平宇. 东北地区矿业城市社会就业脆弱性分析 [J]. 地理研究, 2009, 28(3): 751-760.

[26] ZOU L L, WEI Y M. Impact assessment using DEA of coastal hazards on social-economy in Southeast Asia [J]. Natural Hazards, 2009, 48(2): 167-189.
[27] 卢万合, 刘继生, 蔡文香. 基于生态足迹的吉林省生态脆弱性分析 [J]. 干旱区资源与环境, 2010, 24(5): 17-21.

[28] 杨新军, 张慧, 王子侨. 基于情景分析的西北农村社会-生态系统脆弱性研究——以榆中县中连川乡为例 [J]. 地理科学, 2015, 35(8): 952-959.

[29] 梁增贤, 解利剑. 传统旅游城市经济系统脆弱性研究——以桂林市为例 [J]. 旅游学刊, 2011, 26(5): 40-46.

[30] 苏飞, 张平宇. 基于集对分析的大庆市经济系统脆弱性评价 [J]. 地理学报, 2010, 65(4): 454-464.

[31] 李平星, 陈诚. 基于VSD模型的经济发达地区生态脆弱性评价——以太湖流域为例 [J]. 生态环境学报, 2014, 23(2): 237-243.

[32] 徐君, 李贵芳, 王育红. 国内外资源型城市脆弱性研究综述与展望 [J]. 资源科学, 2015, 37(6): 1266-1278.

[33] 董军, 国方媛. 多层次系统的动态评价研究 [J]. 运筹与管理, 2011, 20(5): 176-184.

[34] 孙平军, 修春亮. 脆弱性视角的矿业城市人地耦合系统的耦合度评价——以阜新市为例 [J]. 地域研究与开发, 2010, 29(6): 75-79.

[35] 周彬, 钟林生, 陈田, 等. 基于变权模型的舟山群岛生态安全预警 [J]. 应用生态学报, 2015, 26(6): 1854-1862.

[36] 舒帮荣, 黄琪, 刘友兆, 等. 基于变权的城镇用地扩展生态适宜性空间模糊评价——以江苏省太仓市为例 [J]. 自然资源学报, 2012, 27(3): 402-412.

[37] 汪培庄. 模糊集与随机集落影 [M]. 北京: 北京师范大学出版社, 1985.

[38] 李洪兴. 因素空间理论与知识表示的数学框架(Ⅷ)——变权综合原理 [J]. 模糊系统与数学, 1995, 9(3): 1-9.

[39] 赵宏波, 马延吉. 基于变权-物元分析模型的老工业基地区域生态安全动态预警研究——以吉林省为例[J]. 生态学报, 2014, 34(16): 4720-4733.

[40] 石荣, 李明捷. 变权综合法在航空公司风险评价中的应用研究 [J]. 中国安全生产科学技术, 2011, 7(10): 143-148.

[41] 吴冠岑, 牛星. 土地生态安全预警的惩罚型变权评价模型及应用——以淮安市为例 [J]. 资源科学, 2010, 32(5): 992-999.

[42] 唐丽芳, 贾冬青, 孟庆鹏. 用MATLAB实现灰色预测GM(1,1)模型 [J]. 沧州师范专科学校学报, 2008, 24(2): 35-37.
Outlines

/