Resource Research Method

Soil Salinity Estimation and Remote Sensing Inversion Based on Near-ground Multispectral and TM Imagery in Winter Wheat Growing Area in the Yellow River Delta—Case Study in Kenli County and Wudi County, Shandong Province

Expand
  • College of Resources and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Taian 271018, China

Received date: 2015-06-15

  Online published: 2016-06-20

Supported by

“Twelfth Five Year”National Science and Technology Support Project, No. 2013BAD05B06 and 2015BAD23B0202;National Natural Science Foundation of China, No. 41271235.

Abstract

The Yellow River Delta is an important area of reserve land. Because of the great effects of the soil salinization on the agricultural production in this area, momentarily acquiring the soil salt content and its distribution in the region is of great significance. We first collected near ground and multispectral images and surface soil salinity data using ADC portable multispectral camera and EC110 portable salinometer, and extracted the growing areas of winter wheat in the Yellow River Delta with two phases of remote sensing images. We built a soil salinity estimation model based on the vegetation index from near earth multispectral images, and then, the fitted the model to the OLI image of the Yellow River Delta to obtain the spatial distribution of soil salinity in winter wheat growing areas in the target region. The soil salinity in the winter wheat growing areas was analyzed. Results indicated that the best model of estimating salt content of soil was the linear model of SAVI (Y=-0.754x+0.870, n=80), estimated R2 being 0.747 and the accuracy being 81.44%; the winter wheat planed in the study area decreased from the southwest inland to the northeast coast; 76.90% of the total cultivated area has the soil salinity ranging between 1.5-3.0 g/kg, and 14.09% of the total cultivated area has the soil salinity more than 3.0 g/kg. This study has probed into soil salinity estimation methods based on the near earth multispectral data and OLI images, which provides a quick and effective approach for crop management and soil salinity estimation in the Yellow River Delta.

Cite this article

ZHANG Tong-rui, ZHAO Geng-xing, GAO Ming-xiu, CHANG Chun-yan, WANG Zhuo-ran . Soil Salinity Estimation and Remote Sensing Inversion Based on Near-ground Multispectral and TM Imagery in Winter Wheat Growing Area in the Yellow River Delta—Case Study in Kenli County and Wudi County, Shandong Province[J]. JOURNAL OF NATURAL RESOURCES, 2016 , 31(6) : 1051 -1060 . DOI: 10.11849/zrzyxb.20150669

References

[1] 宗秀影, 刘高焕, 乔玉良, 等. 黄河三角洲湿地景观格局动态变化分析 [J]. 地球信息科学学报, 2009, 11(1): 91-97. [ZONG X Y, LIU G H, QIAO Y L, et al. Study on dynamic changes of wetland landscape pattern in Yellow River Delta. Journal of Geo-Information Science, 2009, 11(1): 91-97. ]
[2] 韩惠, 冯兆东, 俄有浩, 等. 利用 TM 系列影像监测盐碱化土地变化——以民勤绿洲为例 [J]. 兰州大学学报(自然科学版) , 2006, 42(4): 1-6. [HAN H, FENG Z D, E Y H, et al. Study on the saline soil changes using TM in Minqin Oasis, Northerwest China. Journal of Lanzhou University (Natural Sciences), 2006, 42(4): 1-6. ]
[3] FARIFTECH J, VAN DER MEER F, ATZBERGER C, et al. Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN) [J]. Remote Sensing of Environment, 2006, 7(2): 1-20.
[4] 屈永华, 段小亮, 高鸿永, 等. 内蒙古河套灌区土壤盐分光谱定量分析研究 [J]. 光谱学与光谱分析, 2009, 29(5): 1362-1366. [QU Y H, DUAN X L, GAO H Y, et al. Quantitative retrieval of soil salinity using hyperspectral data in the region of Inner Mongolia Hetao Irrigation District. Spectroscopy and Spectral Analysis, 2009, 29(5): 1362-1366. ]
[5] DWIVEDI R S. Monitoring and the study of the effects of image scale on delineation of salt-affected soils in the Indo-Gangetic Plains [J]. International Journal of Remote Sensing, 1992, 13(8): 1527-1536.
[6] 扶卿华, 倪绍祥, 王世新. 土壤盐分含量的遥感反演研究 [J]. 农业工程学报, 2006, 22(12): 48-54. [FU Q H, NI S X, WANG S X. Retrieval of soil salt content based on remote sensing. Transactions of the CSAE, 2006, 22(12): 48-54. ]
[7] 彭杰, 王家强, 向红英, 等. 土壤含盐量与电导率的高光谱反演精度对比研究 [J]. 光谱学与光谱分析, 2014, 34(2): 510-514. [PENG J, WANG J Q, XIANG H Y, et al. Comparative study on hyperspectral inversion accuracy of soil salt content and electrical conductivity. Spectroscopy and Spectral Analysis, 2014, 34(2): 510-514. ]
[8] BUI E N, HENDERSON B L. Vegetation indicators of salinity in northern Queensland [J]. Austral Ecology, 2003, 28(9): 520-560.
[9] 吴志芬, 赵善伦. 黄河三角洲盐生植被与土壤盐分的相关性研究 [J]. 植物生态学报, 1994, 18(2): 184-193. [WU Z F, ZHAO S L. Studies on Interrelation between salt vegetation and soil salinity in the Yellow River Delta. Acta Phytoecologica Sinica, 1994, 18(2): 184-193. ]
[10] 张雪妮, 吕光辉, 杨晓东, 等. 基于盐分梯度的荒漠植物多样性与群落、种间联接响应 [J]. 生态学报, 2013, 33(18): 5714-5722. [ZHANG X N, LV G H, YANG X D, et al. Responses of desert plant diversity, community and interspecific association to soil salinity gradient. Acta Ecologica Sinica, 2013, 33(18): 5714-5722. ]
[11] 武婕, 李玉环, 李增兵, 等. 基于SPOT-5遥感影像估算玉米成熟期地上生物量及其碳氮累积量 [J]. 植物营养与肥料学报, 2014, 20(1): 64-74. [WU J, LI Y H, LI Z B, et al. Estimation of biomass and C and N accumulation at the maturity stage of corn using synchronous SPOT-5 spectral parameters. Journal of Plant Nutrition and Fertilizer, 2014, 20(1): 64-74. ]
[12] 吴亚坤, 杨劲松, 李晓明. 基于光谱指数与EM38的土壤盐分空间变异性研究 [J]. 光谱学与光谱分析, 2009, 29(4): 1023-1027. [WU Y K, YANG J S, LI X M. Study on spatial variability of soil salinity based on spectral indices and EM38 readings. Spectroscopy and Spectral Analysis, 2009, 29(4): 1023-1027. ]
[13] 姚远, 丁建丽, 张芳, 等. 基于实测高光谱和电磁感应数据的区域土壤盐渍化遥感监测研究 [J]. 光谱学与光谱分析, 2013, 33(5): 1917-1921. [YAO Y, DING J L, ZHANG F, et al. Research on remote sensing monitoring of soil salinization based on measured hyperspectral and EM38 data. Spectroscopy and Spectral Analysis, 2013, 33(5): 1917-1921. ]
[14] 丁建丽, 姚远, 王飞. 干旱区土壤盐渍化特征空间建模 [J]. 生态学报, 2014, 34(16): 4620-4631. [DING J L, YAO Y, WANG F. Detecting soil salinization in arid regions using spectral feature space derived from remote sensing data. Acta Ecologica Sinica, 2014, 34(16): 4620-4631. ]
[15] 常春艳, 赵庚星, 李晋, 等. 黄河三角洲典型生态脆弱区土壤退化遥感反演 [J]. 农业工程学报, 2015, 31(9): 127-132. [CHANG C Y, ZHAO G X, LI J, et al. Remote sensing inversion of soil degradation in typical vulnerable ecological region of Yellow River Delta. Transactions of the CSAE, 2015, 31(9): 127-132. ]
[16] 范晓梅, 刘高焕, 唐志鹏, 等. 黄河三角洲土壤盐渍化影响因素分析 [J]. 水土保持学报, 2010, 24(1): 139-140. [FAN X M, LIU G H, TANG Z P, et al. Analysis on main contributors influencing soil salinization of Yellow River Delta. Journal of Soil and Water Conservation, 2010, 24(1): 139-140. ]
[17] 崔保山, 赵欣胜, 杨志峰, 等. 黄河三角洲芦苇种群特征对水深环境梯度的响应 [J]. 生态学报, 2006, 26(5): 1533-1541. [CUI B S, ZHAO X S, YANG Z F, et al. The response of reed community to the environment gradient of water depth in the Yellow River Delta. Acta Ecologica Sinica, 2006, 26(5): 1533-1541. ]
[18] 赵欣胜, 崔保山, 孙涛, 等. 黄河三角洲潮沟湿地植被空间分布对土壤环境的响应 [J]. 生态环境学报, 2010, 19(8): 1855-1861. [ZHAO X S, CUI B S, SUN T, et al. The relationship between the spatial distribution of vegetation and soil environmental factors in the tidal creek areas of the Yellow River Delta. Ecology and Environmental Sciences, 2010, 19(8): 1855-1861. ]
[19] 陈红艳, 赵庚星, 陈敬春, 等. 基于改进植被指数的黄河口区盐渍土盐分遥感反演 [J]. 农业工程学报, 2015, 31(5) : 107-114. [CHEN H Y, ZHAO G X, CHEN J C, et al. Remote sensing inversion of saline soil salinity based on modified vegetation index in estuary area of Yellow River. Transactions of the CSAE, 2015, 31(5): 107-114. ]
[20] 许民, 宜树华, 叶柏生, 等. 植被盖度及太阳/观测角度对疏勒河上游NDVI和SAV值的影响 [J]. 干旱区资源与环境, 2012(5): 101-108. [XU M, YI S H,YE B S, et al. Influence of PVC and sun/view geometry on NDVI and SAVI in the upstream regions of Shule River Basin. Journal of Arid Land Resources and Environment, 2012(5): 101-108. ]
[21] 杨佳佳, 姜琦刚, 赵静, 等. 基于环境减灾卫星高光谱数据的盐碱地等级划分 [J]. 农业工程学报, 2011, 27(10): 118-124. [YANG J J, JIANG Q G, ZHAO J, et al. Quantitative retrieval and classification of saline soil using HJ-lA hyperspectral data. Transactions of the CSAE, 2011, 27(10): 118-124. ]
[22] 王周龙, 冯学智, 刘晓枚, 等. 秦淮河丘陵地区土地利用遥感信息提取及制图 [J]. 遥感学报, 2003, 7(2): 131-135. [WANG Z L, FENG X Z, LIU X M, et al. The land use remote sensing information extraction and mapping in Qinhuai River hilly region. International Journal of Remote Sensing, 2003, 7(2): 131-135. ]
[23] YI S H, ZHOU Z Y, REN S L, et al. Effects of permafrost degradation on alpine grassland a semi-arid basin on the Qinghai-Tibetan Plateau [J]. Environmental Research Letters, 2011, 6(4): 209-216.
[24] 阎鹏, 徐世良, 曲克健, 等. 山东土壤 [M]. 北京: 中国农业出版社, 1994: 231-232. [YAN P, XU S L, QU K J, et al. Soils in Shandong. Beijing: China Agriculture Press, 1994: 231-232. ]
[25] RAO B R M, RAVISANKAR T, DWIVEDI R S, et al. Spectral behavior of salt-affected soils [J]. International Journal of Remote Sensing 1995, 16(12): 2125-2136.
[26] 扶卿华, 倪绍祥, 李开丽. 土壤盐碱化遥感监测方法 [J] . 农机化研究, 2005(1): 110-112. [FU Q H, NI S X, LI K L. Methods of soil salinization monitoring by remote sensing. Journal of Agricultural Mechanization Research, 2005(1): 110-112. ]
Outlines

/