Resource Evaluation

Projection of the Impacts of Global Warming of 1.5 ℃ and 2.0 ℃ on Runoff in the Upper-Middle Reaches of Huaihe River Basin

Expand
  • 1.Anhui Climate Center, Hefei 230031, China;
    2.Key Laboratory of Atmospheric Science and Satellite Remote Sensing of Anhui Province, Hefei 230031, China;
    3.National Climate Center, Beijing 100081, China;
    4.Chongqing Climate Center, Chongqing 401147, China

Received date: 2017-10-11

  Online published: 2018-11-20

Supported by

National Key R & D Program of China, No. 2016YFE0102400; Climatic Change Research Item of the China Meteorological Administration, No. CCSF201810 and CCSF201832

Abstract

The climate change in the upper-middle reaches of Huaihe River Basin was projected in scenarios of 1.5 ℃ and 2.0 ℃ global warming using five General Circulation Models (GCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5) and three Representative Concentration Pathways (RCPs). Then the hydrological responses to climate change were simulated using hydrological model SWAT (Soil Water Assessment Tool), and the uncertainties of the results were estimated and compared quantitatively. This study draws following conclusions: 1) The simulation results of SWAT model are in agreement with discharge observations very well in both calibration period and validation period, so it is feasible to apply SWAT model in estimating the impacts of climate change. 2) The annual average temperature in the upper-middle reaches of Huaihe River Basin will rise by 1.1 ℃ and 1.7 ℃ compared to the baseline (1986-2005). The annual precipitation will increase by 4% and 7% in scenarios of 1.5 ℃ and 2.0 ℃ global warming respectively. The ensemble mean (MME) annual runoff simulated based on SWAT will increase by 5% and 8% in scenarios of 1.5 ℃ and 2.0 ℃ global warming respectively. 3) The projected monthly runoff distribution will not change, and runoff will be concentrated in midsummer and early autumn (from June to September). Global warming will increase monthly high runoff dramatically, especially 2.0 ℃ global warming. As a result, the risk of flooding would increase obviously in the future, especially by 2.0 ℃ global warming. 4) There are big uncertainties in projected precipitation and runoff, and the uncertainty comes mainly from GCMs structure, especially in the scenario of 2.0 ℃ global warming.

Cite this article

WANG Sheng, XU Hong-mei, LIU Lü-liu, WANG Yong, SONG A-wei . Projection of the Impacts of Global Warming of 1.5 ℃ and 2.0 ℃ on Runoff in the Upper-Middle Reaches of Huaihe River Basin[J]. JOURNAL OF NATURAL RESOURCES, 2018 , 33(11) : 1966 -1978 . DOI: 10.31497/zrzyxb.20171050

References

[1]IPCC. Summary for policymakers [M]// STKCKER T F, QIN D, PLATTNER G K, et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge UK: Cambridge University Press, 2013.
[2]胡婷, 孙颖, 张学斌. 全球1.5 和2 ℃温升时的气温和降水变化预估[J]. 科学通报, 2017, 62(26): 3098-3111.
[HU T, SUN Y, ZHANG X B.Temperature and precipitation projection at 1.5 and 2 ℃ increase in global mean temperature. Chinese Science Bulletin, 2017, 62(26): 3098-3111. ]
[3]徐影, 周波涛, 吴婕, 等. 1.5~4 ℃升温阈值下亚洲地区气候变化预估[J]. 气候变化研究进展, 2017, 13(4): 306-315.
[XU Y, ZHOU B T, WU J, et al.Asian climate change in response to Four Global Warming Targets. Advances in Climate Change Research, 2017, 13(4): 306-315. ]
[4]IPCC. Summary for policymakers[M]// FIELD C B, BARROS V R, DOKKEN DJ, et al. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge UK: Cambridge University Press, 2014.
[5]高云. 巴黎气候变化大会后中国的气候变化应对形势[J]. 气候变化研究进展, 2017, 13(1): 89-94.
[GAO Y.China’s response to climate change issues after Paris climate change conference. Advances in Climate Change Research, 2017, 13(1): 89-94. ]
[6]HUBER V, SCHELLNHUBER H J, ARNELL N W, et al.Climate impact research: Beyond patchwork[J]. Earth System Dynamics, 2014, 5(1): 399-408.
[7]World Bank.Turn down the heat: Why a 4 ℃ warmer world must be avoided[R]. Washington D C: World Bank, 2012.
[8]ADAMS S, BAARSCH F, BONDEAU A, et al.Turn down the heat: Climate extremes, regional impacts, and the case for resilience-full report[R]. Washington D C: World Bank, 2013.
[9]MEINSHAUSEN M, MEINSHAUSEN N, HARE W, et al.Greenhouse-gases mission targets for limiting global warming to 2 ℃[J]. Nature, 2009, 458(7242): 1158-1162.
[10]SCHNEIDER S H, SEMENOV S, PATWARDHAN A, et al.Assessing key vulnerabilities and the risk from climate change[M]// PARRY M, CANZIANI O, PALUTIKOF J, et al. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group Ⅱ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge UK: Cambridge University Press, 2007: 779-810.
[11]SCHLEUSSNER C F, LISSNER T K, FISHER E M, et al.Differential climate impacts for policy-relevant limits to global warming: The case of 1.5 ℃ and 2 ℃[J]. Earth System Dynamics, 2016, 6(2): 2447-2505.
[12]CISNEROS J, JIMÉNEZ-CISNEROS B E, OKI T, et al. Freshwater resources [M]// FIELD C B, BARROS V R, DOKKEN D J, et al. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge UK: Cambridge University Press, 2014: 229-269.
[13]ZHANG W, VILLARINI G.Heavy precipitation is highly sensitive to the magnitude of future warming[J]. Climatic Change, 2017, 145(1/2): 249-257.
[14]LEHNER F, COATS S, STOCKER T F, et al.Projected drought risk in 1.5 ℃ and 2 ℃ warmer climates[J]. Geophysical Research Letters, 2017, 44(14): 7419-7428.
[15]SCHEWE J, HEINKE J, GERTEN D, et al.Multimodel assessment of water scarcity under climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(9): 3245-3250.
[16]《第二次气候变化国家评估报告》编写委员会. 第二次气候变化国家评估报告 [M]. 北京: 科学出版社, 2011.
[The Second National Assessment Report on Climate Change Writing Committee. Second National Assessment Report on Climate Change. Beijing: Science Press, 2011. ]
[17]丁相毅, 贾仰文, 王浩, 等. 气候变化对海河流域水资源的影响及其对策[J]. 自然资源学报, 2010, 25(4): 604-613.
[DING X Y, JIA Y W, WANG H, et al.Impacts of climate change on water resources in the Haihe River Basin and corresponding countermeasures. Journal of Natural Resources, 2010, 25(4): 604-613. ]
[18]秦大河. 气候变化科学与人类可持续发展[J]. 地理科学进展, 2014, 33(7): 874-883.
[QIN D H.Climate change science and sustainable development. Progress in Geography, 2014, 33(7): 874-883. ]
[19]刘绿柳, 姜彤, 徐金阁, 等. 21世纪珠江流域水文过程对气候变化的响应[J]. 气候变化研究进展, 2012, 8(1): 28-34.
[LIU L L, JIANG T, XU J G, et al.Responses of hydrological processes to the climate change in the Zhujiang River Basin in the 21st century. Advances in Climate Change Research, 2012, 8(1): 28-34. ]
[20]金兴平, 黄艳, 杨文发, 等. 未来气候变化对长江流域水资源影响分析[J]. 人民长江, 2009, 40(8): 35-38.
[JIN X P, HUANG Y, YANG W F, et al.Analysis of impact of future climate change on water resources in Yangtze River Basin. Yangtze River, 2009, 40(8): 35-38. ]
[21]曹丽娟, 董文杰, 张勇. 未来气候变化对黄河和长江流域极端径流影响的预估研究[J]. 大气科学, 2013, 37(3): 634-644.
[CAO L J, DONG W J, ZHANG Y.Estimation of the effect of climate change on extreme streamflow over the Yellow River and Yangtze River Basins. Chinese Journal of Atmospheric Sciences, 2013, 37(3): 634-644. ]
[22]CHEN X L, ZHOU T J.Uncertainty in crossing time of 2 ℃ warming threshold over China[J]. Chinese Science Bulletin, 2016, 61(18): 1451-1459.
[23]SU B D, HUANG J L, ZENG X F, et al.Impacts of climate change on streamflow in the upper Yangtze River Basin[J]. Climatic Change, 2017, 141(3): 533-546.
[24]LIU L L, XU H M, WANG Y, et al.Impacts of 1.5 and 2 ℃ global warming on water availability and extreme hydrological events in Yiluo and Beijiang River catchments in China[J]. Climatic Change, 2017, 145(10): 1-14.
[25]高超, 刘青, 苏布达, 等. 不同尺度和数据基础的水文模型适用性评估研究——淮河流域为例[J]. 自然资源学报, 2013, 28(10): 1765-1777.
[GAO C, LIU Q, SU B D, et al.The applicability assessment of hydrological models with different resolution and database in the Huaihe River Basin, China. Journal of Natural Resources, 2013, 28(10): 1765-1777. ]
[26]田红. 淮河流域气候变化影响评估报告 [M]. 北京: 气象出版社, 2012.
[TIAN H.Climate Change Assessment Report of Huaihe River Basin. Beijing: China Meteorological Press, 2012. ]
[27]WEEDON G P, GOMES S, VITERBO P, et al.The WATCH forcing data 1958-2001: A meteorological forcing dataset for land surface and hydrological-models [R]. WATCH Technical Report, 2010, 22:1-41.
[28]ESSOU G, SABARLY F, LUCAS P, et al.Can precipitation and temperature from meteorological reanalyses be used for hydrological modeling?[J]. Journal of Hydrometeorology, 2016, 17(7): 1929-1950.
[29]HEMPEL S, FRIELELER K, WARSZAWSKI L, et al.A trend-preserving bias correction the ISI-MIP approach[J]. Earth System Dynamics, 2013, 4(2): 219-236.
[30]MCWEENEY C F, JONES R G.How representative is the spread of climate projections from the 5 CMIP5 GCMs used in ISI-MIP[J]. Climate Services, 2016, 1: 24-29.
[31]王胜, 许红梅, 高超, 等. 基于SWAT模型分析淮河流域中上游水量平衡要素对气候变化的响应[J]. 气候变化研究进展, 2015, 11(6): 402-411.
[WANG S, XU H M, GAO C, et al.Water balance response of the climatic change based on SWAT model in the upper-middle reach of Huaihe River Basin. Advances in Climate Change Research, 2015, 11(6): 402-411. ]
[32]USDA. Chapter 10 Estimation of direct runoff from storm rainfall[M]// USDA. National Engineering Handbook, Part 630: Hydrology. Washington D C, USA, 2004: 1-22.
[33]HARGREAVES G L, HARGREAVESG H, RILEY J P.Agricultural benefits for Senegal River Basin[J]. Journal of Irrigation & Drainage Engineering, 1985, 111(2): 113-124.
[34]龙爱华, 邹松兵, 许宝荣, 等. SWAT 2009理论基础 [M]. 郑州: 黄河水利出版社, 2012.
[LONG A H, ZOU S B, XU B R, et al.SWAT 2009 Theoretical Basis. Zhengzhou: Yellow River Conservancy Press, 2012. ]
[35]DAVIS J R.Guidance for Rural Watershed Calibration with EPA SWMM[D]. Colorado: Colorado State University, 2008: 21-26.
[36]中国气象局气候变化中心. 中国气候变化监测公报(2016) [M]. 北京: 科学出版社, 2017.
[Beijing Climate Change Center of China Meteorological Administration. Climate Change Monitor Bulletin (2016). Beijing: Science Press, 2017. ]
Outlines

/