Resource Evaluation

Carbon Effect Accounting and Analysis of Land Consolidation in Hubei Province

Expand
  • School of Public Administration, China University of Geosciences, Wuhan 430074, China

Received date: 2017-10-27

  Online published: 2018-11-20

Supported by

National Natural Science Foundation of China, No. 71673258.

Abstract

An analytical framework is established to analyze the carbon effects of land consolidation projects, which includes short-term effects (SE) and long-term effects (LE). The SE includes engineering construction effects (ECE) and land use conversion effects (LUCE). The LE contains farmland ecosystem effects (FEE) and agricultural activities effects (AAE). Carbon emission coefficient method and ecosystem type method were used to account carbon emission for consolidation projects. After calculating the carbon emission, the time needed to achieve carbon balance after implementation was accounted. The comparative analysis is used to analyze the carbon effects of each project which belongs to different topography regions and engineering regions. We selected fourteen consolidation projects in Hubei Province as research cases. Five of them locate in plain area, four in hilly area, and five in mountains area. Among 14 projects, eight belong to the plain engineering model area (Ⅱ2), and six belong to the river (gully) valley basin engineering model area (Ⅲ1). During the implementation, all the projects showed carbon emission effect. The average amount of carbon emissions of projects located in plain, hilly, mountain areas, Ⅱ2 region and Ⅲ1 region was 8 541.47, 14 266.45, 12 591.86, 11 415.09 and 11 901.97 t, respectively. The average carbon emission per unit area was 6.29, 12.37, 15.80, 9.06 and 14.58 t/hm2, respectively. The average carbon emission per unit investment was 2.76, 3.77, 4.92, 3.31 and 4.50 t/million yuan, respectively. As to LUCE, the projects in plain area mainly showed carbon absorption effects, with an average value of 184.13 t per project. The projects in mountainous area showed carbon emission effects with an average value of 5 398.49 t per project, depending on the conversions of land use types such as forest land or grassland with high carbon reserves converting into other types of land. After consolidation, the area, quality and biological yield of cultivated land increased in different degrees. The average added value of carbon sequestration of FEE in plain area is 1 554.43 t/a, in hilly area is 1 125.40 t/a and in mountain area is 1 241.65 t/a. After land consolidation, irrigation and drainage facilities of each project area generally increased, thus leading to a larger increase of paddy field irrigation. Therefore, the carbon emission increased. The carbon emission of AAE increased in varying degrees (from 8.11 t/a to 463.76 t/a) after consolidation. It took different time for projects to balance SE caused by remediation activities. For these projects, the average time needed to achieve carbon balance after consolidation in plain area was 5.24 a, in hilly area was 10.87 a and in mountainous area was 19.68 a. At the end of this paper, some suggestions on how to form a low-carbon consolidation model were put forward.

Cite this article

ZHANG Li-guo, WANG Zhan-qi, LI Bing-qing . Carbon Effect Accounting and Analysis of Land Consolidation in Hubei Province[J]. JOURNAL OF NATURAL RESOURCES, 2018 , 33(11) : 2006 -2019 . DOI: 10.31497/zrzyxb.20171141

References

[1]HOUGHTON R A, VAN DER WERF G R, DEFRIES R S, et al. Chapter G2 Carbon emissions from land use and land-cover change[J]. Biogeosciences, 2012, 9(1): 5125-5142.
[2]WATSON R T, NOBLE I R, BOLIN B, et al.Land Use, Land Use Change, and Forestry [M]. Cambridge, UK: Cambridge University Press, 2000.
[3]高向军. 土地整理理论与实践 [M]. 北京: 地质出版社, 2003.
[GAO X J.Theory and Practice of Land Consolidation. Beijing: Geological Publishing House, 2003. ]
[4]张中秋, 胡宝清, 韦金洪. 基于能源与工料消耗的土地整治项目碳排放与碳足迹[J]. 湖北农业科学, 2016, 55(7): 1867-1872.
[ZHANG Z Q, HU B Q, WEI J H.Carbon emission and carbon footprint of land consolidation projects based on energy and material consumption. Hubei Agricultural Sciences, 2016, 55(7): 1867-1872. ]
[5]张庶, 金晓斌, 杨绪红, 等. 农用地整治项目的碳效应分析与核算研究[J]. 资源科学, 2016, 38(1): 93-101.
[ZHANG S, JIN X B, YANG X H, et al.Determining and estimating impacts of farmland consolidation projects on the regional carbon effects. Resources Science, 2016, 38(1): 93-101. ]
[6]魏凤娟, 李江风, 房超. 能源消费视角下农村土地整理碳排放研究[J]. 国土资源科技管理, 2013, 30(2): 24-29.
[WEI F J, LI J F, FANG C.Study of carbon emission in rural land consolidation from angle of energy consumption. Scientific and Technological Management of Land and Resources, 2013, 30(2): 24-29. ]
[7]谭梦, 黄贤金, 钟太洋, 等. 土地整理对农田土壤碳含量的影响[J]. 农业工程学报, 2011, 27(8): 324-329.
[TAN M, HUANG X J, ZHONG T Y, et al.Impacts of land consolidation on soil organic carbon content. Transactions of the CSAE, 2011, 27(8): 324-329. ]
[8]郭义强, 郧文聚, 黄妮, 等. 土地整理工程对土壤碳排放的影响[J]. 土壤通报, 2016, 47(1): 36-41.
[GUO Y Q, YUN W J, HUANG N, et al.The effect of land consolidation projects on soil carbon emissions. Chinese Journal of Soil Science, 2016, 47(1): 36-41. ]
[9]崔越, 赵华甫, 周璐瑶, 等. 不同类型的耕地整治工程碳排放比较研究[J]. 湖北农业科学, 2017, 56(6): 1040-1044.
[CUI Y, ZHAO H P, ZHOU L Y, et al.Research on the comparison of carbon emissions among different types of farmland reclaimation project. Hubei Agricultural Sciences, 2017, 56(6): 1040-1044. ]
[10]金贵, 王占岐, 重多, 等. 西藏土地开发整理工程类型区划分研究[J]. 国土资源科技管理, 2013, 30(5): 21-27.
[JIN G, WANG Z Q, CHONG D, et al.Categorizing of land consolidation engineering zones in Tibet. Scientific and Technological Management of Land and Resources, 2013, 30(5): 21-27. ]
[11]龙花楼. 论土地整治与乡村空间重构[J]. 地理学报, 2013, 68(8): 1019-1028.
[LONG H L.Land consolidation and rural spatial restructuring. Acta Geographica Sinica, 2013, 68(8): 1019-1028. ]
[12]冯玲, 吝涛, 赵千钧. 城镇居民生活能耗与碳排放动态特征分析[J]. 中国人口·资源与环境, 2011, 21(5): 93-100.
[FENG L, LIN T, ZHAO Q J.Analysis of the dynamic characteristics of urban household energy use and carbon emissions in China. China Population, Resources and Environment, 2011, 21(5): 93-100. ]
[13]刘莉娜, 曲建升, 黄雨生, 等. 中国居民生活碳排放的区域差异及影响因素分析[J]. 自然资源学报, 2016, 30(8): 1364-1377.
[LIU L N, QU J S, HUANG Y S, et al.Analyze on the spatial-temporal pattern and influence factors of China’s per capita household carbon emissions. Journal of Natural Resources, 2016, 30(8): 1364-1377. ]
[14]IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories[M]. Prepared by the National Greenhouse Gas Inventories Programme. IGES, Japan, 2008.
[15]俞海勇, 王琼, 张贺, 等. 基于全寿命周期的预拌混凝土碳排放计算模型研究[J]. 粉煤灰, 2011, 23(6): 42-46.
[YU H Y, WANG Q, ZHANG H, et al.Servicelife period-based carbon emission computing model for ready-mix concrete. Coal Ash, 2011, 23(6): 42-46. ]
[16]王志慧, 王永超, 毛伟, 等. 无机复合烧结页岩空心砖生命周期碳排放分析[J]. 新型建筑材料, 2013, 40(12): 34-37.
[WANG Z H, WANG Y C, MAO W, et al.Analysis on carbon emission for inorganic composite sintered shale hollow brick based on life cycle assessment. New Building Materials, 2013, 40(12): 34-37. ]
[17]黎礼刚, 李凌云, 周紧东, 等. 护岸工程材料综合能耗和碳排放计算及评价[J]. 人民长江, 2012, 43(7): 50-55.
[LI L G, LI L Y, ZHOU J D, et al.Calculation and evaluation of comprehensive energy consumption and carbon emissions of revetment works materials. Yangtze River, 2012, 43(7): 50-55. ]
[18]魏军晓, 耿元波, 赵建安, 等. 基于碳酸盐分析的水泥碳排放因子测算[J]. 自然资源学报, 2016, 30(8): 1378-1387.
[WEI J X, GENG Y B, ZHAO J A, et al.Research on CO2 emission factors of cement production by the measurement of carbonate. Journal of Natural Resources, 2016, 30(8): 1378-1387. ]
[19]曲建升, 刘莉娜, 曾静静, 等. 中国城乡居民生活碳排放驱动因素分析[J]. 中国人口·资源与环境, 2014, 24(8): 35-43.
[QU J S, LIU L N, ZENG J J, et al.An analysis on driving factors of China’s urban and rural household carbon emissions. China Population, Resources and Environment, 2014, 24(8): 35-43. ]
[20]揣小伟, 黄贤金, 郑泽庆, 等. 江苏省土地利用变化对陆地生态系统碳储量的影响[J]. 资源科学, 2011, 33(10): 1932-1939.
[CHUAI X W, HUANG X J, ZHENG Z Q, et al.Land use change and its influence on carbon storage of terrestrial ecosystems in Jiangsu Province. Resources Science, 2011, 33(10): 1932-1939. ]
[21]方精云, 郭兆迪, 朴世龙, 等. 1981—2000年中国陆地植被碳汇的估算[J]. 中国科学(地球科学), 2007, 37(6): 804-812.
[FANG J Y, GUO Z D, PU S L, et al.Estimation of carbon sink of terrestrial vegetation in China from 1981 to 2000. Science in China: Earth Science, 2007, 37(6): 804-812. ]
[22]李颖, 葛颜祥, 刘爱华, 等. 基于粮食作物碳汇功能的农业生态补偿机制研究[J]. 农业经济问题, 2014, 35(10): 33-40.
[LI Y, GE Y X, LIU A H, et al.Study on agricultural ecological compensation mechanism based on carbon sink function of grain crops. Agricultural Economic Problems, 2014, 35(10): 33-40. ]
[23]尧波, 郑艳明, 胡丹, 等. 江西省县域农业碳排放的时空动态及影响因素分析[J]. 长江流域资源与环境, 2014, 23(3): 311-318.
[YAO B, ZHENG Y M, HU D, et al.Spatial and temporal variations of county based agricultural carbon emissions and associated effect factors in Jiangxi Province. Resources and Environment in the Yangtze Basin, 2014, 23(3): 311-318. ]
[24]伍芬琳, 李琳, 张海林, 等. 保护性耕作对农田生态系统净碳释放量的影响[J]. 生态学杂志, 2007, 26(12): 2035-2039.
[WU F L, LI L, ZHANG H L, et al.Effects of conservation tillage on net carbon flux from farmland ecosystems. Chinese Journal of Ecology, 2007, 26(12): 2035-2039. ]
[25]赵荣钦, 秦明周. 中国沿海地区农田生态系统部分碳源/汇时空差异[J]. 生态与农村环境学报, 2007, 23(2): 1-6, 11.
[ZHAO R Q, QIN M Z.Temporal spatial viriation of partial carbon source/ sink of farm land ecosystem in coastal China. Journal of Ecology and Rural Environment, 2007, 23(2): 1-6, 11. ]
[26]田云, 张俊飚, 李波. 中国农业碳排放研究: 测算、时空比较及脱钩效应[J]. 资源科学, 2012, 34(11): 2097-2105.
[TIAN Y, ZHANG J B, LI B.Agricultural carbon emissions in China: Calculation, spatial-temporal comparison and decoupling effects. Resources Science, 2012, 34(11): 2097-2105. ]
[27]王逸韵. 农村土地整理项目碳排放研究——基于江苏省盐都区的实证分析[J]. 农村经济与科技, 2016, 27(15): 1-4.
[WANG Y Y.Study on carbon emission of rural land consolidation—An empirical research from Yandu District of Jiangsu Province. Rural Economic and Science, 2016, 27(15): 1-4. ]
[28]郭义强, 陈朝锋, 韩赜, 等. 河北省柏乡县土地整理项目的碳排放效应研究[J]. 中国农学通报, 2015, 31(36): 205-210.
[GUO Y Q, CHEN C F, HAN Z, et al.Carbon emission effect of land consolidation project in Baixiang County of Hebei Province. Chinese Agricultural Science Bulletin, 2015, 31(36): 205-210. ]
Outlines

/