Characteristics, Hotspots and Influencing Factors of Wetland Change in Huaihe River Basin

Expand
  • 1. School of Life Sciences, Nanjing University, Nanjing 210093, China;
    2. HydroChina Huadong Engineering Corporation, Hangzhou 310014, China

Received date: 2012-08-29

  Revised date: 2013-01-09

  Online published: 2013-08-19

Abstract

Using Landsat remote sensing data, we study the size change of each wetland type in Huaihe River Basin from 1995 to 2007 quantitatively and analyze the characteristics of wetland change. Then we identify the hotspots of wetland change using neighborhood analysis and study the influencing factors of spatial differentiation of wetland change hotspots by constructing Logistic regression model. Results show a remarkable increase in artificial wetlands (including paddy fields, reservoir and ponds), but a distinct decrease of natural wetlands (mainly referring to swamps and lakes) during the research period. Increase amount of paddy fields and reservoir ponds are 10296.05 km2 and 2796.45 km2, which account for 16.81% and 4.57% of the total wetland area of the Huaihe River Basin and 3.82% and 1.04% of the whole basin area in 1995 respectively. Decrease amount of lakes and swamps are 648.22km2 and 1705.97 km2, which account for 1.06% and 2.79% of the total wetland area of the Huaihe River Basin and 0.24% and 0.63% of the whole basin area in 1995 respectively. The decreased swamps and lakes are principally converted to artificial wetlands. Hotspots of wetland change are mostly distributed in the eastern and southern part of Huaihe River Basin. And hotspots of artificial wetlands change exhibit a more concentrated and continuous distribution, but that of natural wetlands are sparser and more disperse. Among all natural and geographical influencing factors, elevation and temperature have relatively higher impacts on the occurrence of artificial wetlands increase hotspots and natural wetlands decrease hotspots. And there is a high incidence of wetland change hotspots in areas which have relatively higher temperature and are lower lying. Moreover, wetland change hotspots are also inclined to occur in areas having relatively lower precipitation. Socio-economic factors and transport accessibility play a significant but less important role in hotspots occurrence. For the socio-economic influencing factors, artificial wetland increase hotspots are prone to occur in areas which have higher economic output value, while natural wetland decrease hotspots are apt to distribute in areas which have lower economic output value. As for transport accessibility, artificial wetland increase hotspots mostly occur in the area far from the high grade road and close to residential area, and natural wetland change hotspots mainly occur in the area far from the residential area. In Huaihe River Basin, the hotspots occurrence of wetland change is affected by the coupling effect of multiple factors, but the restriction effect of physicographica background is the primary factor leading to spatial differentiation of wetland change hotspots.

Cite this article

XU Li-li, WAN Yun, SHENG Sheng, WEN Teng, XU Chi, AN Shu-qing . Characteristics, Hotspots and Influencing Factors of Wetland Change in Huaihe River Basin[J]. JOURNAL OF NATURAL RESOURCES, 2013 , 28(8) : 1383 -1394 . DOI: 10.11849/zrzyxb.2013.08.011

References

[1] 何池全, 赵魁义, 余国营, 等. 湿地生态过程研究进展[J]. 地球科学进展, 2000, 15(2): 165-171. [HE Chi-quan, ZHAO Kui-yi, YU Guo-ying, et al. Advance in research of ecological progress in wetlands. Advance in Earth Sciences, 2000, 15(2): 165-171.]
[2] Niu Z G, Gong P, Cheng X, et al. Geographical character of China’s wetlands derived from remotely sensed data [J]. Science in China Series D: Earth Sciences, 2009, 52(6): 723-738.
[3] 孟宪民. 湿地与全球环境变化[J]. 地理科学, 1999, 19(5): 385-391. [MENG Xian-min. Wetlands and global environmental change. Scientia Geographica Sinica, 1999, 19(5): 385-391.]
[4] Zedler J B, Kercher S. Wetland resources: Status, trends, ecosystem services, and restorability [J]. Annual Review of Environment and Resources, 2005, 30: 39-74.
[5] 崔保山, 杨志峰. 湿地生态系统健康研究进展[J]. 生态学杂志, 2001, 20(3): 31-36. [CUI Bao-shan, YANG Zhi-feng. Research review on wetland ecosystem health. Chinese Journal of Ecology, 2001, 20(3): 31-36.]
[6] Xiao D R, Tian B, Tian K, et al. Landscape patterns and their changes in Sichuan Ruoergai Wetland National Nature Reserve [J]. Acta Ecologica Sinica, 2010, 30(1): 27-32.
[7] Han M, Sun Y N, Xu S G. Characteristics and driving factors of marsh changes in Zhalong wetland of China [J]. Environmental Monitoring and Assessment, 2007, 127(1): 363-381.
[8] Rebelo L M, Finlayson C M, Nagabhatla N. Remote sensing and GIS for wetland inventory, mapping and change analysis [J]. Journal of Environmental Management, 2009, 90(7): 2144-2153.
[9] 曾辉, 高启辉, 陈雪, 等. 深圳市1988—2007年间湿地景观动态变化及成因分析[J]. 生态学报, 2010, 30(10): 2706-2714. [ZENG Hui, GAO Qi-hui, CHEN Xue, et al. Changes of the wetland landscape in Shenzhen City from 1988 to 2007 and the driving force analysis. Acta Ecologica Sinica, 2010, 30(10): 2706-2714.]
[10] 郭鹏, 邹春辉, 王旭. 淮河流域水资源与水环境问题及对策研究[J]. 气象与环境科学, 2011, 34(S1): 96-99. [GUO Peng, ZOU Chun-hui, WANG Xu. Study on the problems and solutions of water resources and water environment in the Huaihe Basin. Meteorological and Environmental Sciences, 2011, 34(S1): 96-99.]
[11] 侯伟, 张树文, 张养贞, 等. 三江平原挠力河流域50年代以来湿地退缩过程及驱动力分析[J]. 自然资源学报, 2004, 19(6): 725-731. [HOU Wei, ZHANG Shu-wen, ZHANG Yang-zhen, et al. Analysis on the shrinking process of wetland in Naoli River Basin of Sanjiang Plain since the 1950s and its driving forces. Journal of Natural Resources, 2004, 19(6): 725-731.]
[12] 王昌海, 崔丽娟, 毛旭锋. 湿地退化的人为影响因素分析——基于时间序列数据和截面数据的实证分析[J]. 自然资源学报, 2012, 27(10): 1677-1687. [WANG Chang-hai, CUI Li-juan, Mao Xu-feng, et al. Study on human factors in wetland degradation — Experimental analysis based on diachronic and synchronic data. Journal of Natural Resources, 2012, 27(10): 1677-1687.]
[13] Xu C, Sheng S, Zhou W, et al. Characterizing wetland change at landscape scale in Jiangsu Province, China [J]. Environmental Monitoring and Assessment, 2011, 179(1): 279-292.
[14] Sheng S, Xu C, Zhang S W, et al. Hot spots of wetland vegetation reduction in relation to human accessibility: Differentiating human impacts on natural ecosystems at multiple scales [J]. Environmental Earth Sciences, 2012, 65(7): 1965-1975.
[15] 水利部淮河水利委员会《淮河水利简史》编写组. 淮河水利简史[M]. 北京: 水利电力出版社, 1990. [The Huaihe River Commission of the Ministry of Water Resources, Writing Group of A Brief History of Huaihe River Water Conservancy. A Brief History of Huaihe River Water Conservancy. Beijing: Water Conservancy and Hydropower Press, 1990.]
[16] 毛信康. 淮河流域水资源可持续利用[M]. 北京: 科学出版社, 2006. [MAO Xin-kang. Sustainable Use of Water Resources in Huaihe River Basin. Beijing: Science Press, 2006.]
[17] 刘纪远. 中国资源环境遥感宏观调查与动态研究[M]. 北京: 中国科学技术出版社, 1996. [LIU Ji-yuan. Macro-scale Survey and Dynamic Study of Natural Resources and Environment of China by Remote Sensing. Beijing: China Science and Technology Press, 1996.]
[18] Ramsar. Convention on wetlands of international importance especially as waterfowl habitat 2/2/1971 Ramsar, Iran. The Ramsar Bureau, Gland, Switzerland. 1971.
[19] 刘平, 关蕾, 吕偲, 等. 中国第二次湿地资源调查的技术特点和成果应用前景[J]. 湿地科学, 2011, 9(3): 284-289. [LIU Ping, GUAN Lei, Lü Cai, et al. Technical characteristics and application prospects of achievements of the second national wetland investigation. Wetland Science, 2011, 9(3): 284-289.]
[20] 孙华生, 黄敬峰, 李波, 等. 中国水稻遥感信息获取区划研究[J]. 中国农业科学, 2008, 41(12): 4039-4047. [SUN Hua-sheng, HUANG Jing-feng, LI Bo, et al. Study on the regionalization of paddy rice informationacquirement through remote sensing technology in China. Scientia Agricultura Sinica, 2008, 41(12): 4039-4047.]
[21] 山东省农业厅. 山东省农业功能区划方案[EB/OL]. http://www.sdny.gov.cn/art/2009/11/18/art_767_213989.html, 2009. [Department of agriculture of Shandong Province. Shandong Province regionalization of agricultural function. http://www.sdny.gov.cn/art/2009/11/18/art_767_213989.html, 2009]
[22] 安徽农村综合经济信息中心. 安徽省农业分区概述[EB/OL]. http://www.ahnw.gov.cn/2006nykj/iframe.asp?c=3&ntype=3. [Anhui Rural Economic Integrated Information Center. Overview of Anhui agricultural zoning. http://www.ahnw.gov.cn/2006nykj/iframe.asp
[23] 邵景安, 李阳兵, 魏朝富, 等. 区域土地利用变化驱动力研究前景展望[J]. 地球科学进展, 2007, 22(8): 798-809. [SHAO Jing-an, LI Yang-bing, WEI Chao-fu, et al. The drivers of land use change at regional scale: Assessment and prospects. Advances in Earth Science, 2007, 22(8): 798-809.]
[24] 时琴, 刘茂松, 宋瑾琦, 等. 城市化过程中聚落占地率的动态分析[J]. 生态学杂志, 2008, 27(11): 1979-1984. [SHI Qin, LIU Mao-song, SONG Jin-qi, et al. Dynamic analysis on settlement percentage coverage in urbanization. Chinese Journal of Ecology, 2008, 27(11): 1979-1984.]
[25] 徐玲玲, 张玉书, 陈鹏狮, 等. 近20年盘锦湿地变化特征及影响因素分析[J]. 自然资源学报, 2009, 24(3): 483-490. [XU Ling-ling, ZHANG Yu-shu, CHEN Peng-shi, et al. Analysis on the changing characteristics and influencing factors of Panjin Wetland during the past 20 years. Journal of Natural Resources, 2009, 24(3): 483-490.]
[26] 张国坤, 邓伟, 吕宪国, 等. 新开河流域湿地景观格局动态变化过程研究[J]. 自然资源学报, 2007, 22(2): 204-210. [ZHANG Guo-kun, DENG Wei, Lü Xian-guo, et al. The dynamic change of wetland landscape patterns in Xinkai River Basin. Journal of Natural Resources, 2007, 22(2): 204-210.]
[27] 周昕薇, 宫辉力, 赵文吉, 等. 北京地区湿地资源动态监测与分析[J]. 地理学报, 2006, 61(6): 654-662. [ZHOU Xin-wei, GONG Hui-li, ZHAO Wen-ji, et al. Dynamic monitoring and analysis of wetland resources in Beijing. Acta Geographica Sinica, 2006, 61(6): 654-662.]
[28] Bürgi M, Straub A, Gimmi U, et al. The recent landscape history of Limpach Valley, Switzerland: Considering three empirical hypotheses on driving forces of landscape change [J]. Landscape Ecology, 2010, 25(2): 287-297.
[29] 李颖, 田竹君, 叶宝莹, 等. 嫩江下游沼泽湿地变化的驱动力分析[J]. 地理科学, 2003, 23(6): 686-691. [LI Ying, TIAN Zhu-jun, YE Bao-ying, et al. Driving forces analysis of mire wetland change in lower Nenjiang Watershed. Scientia Geographica Sinica, 2003, 23(6): 686-691.]
[30] 李洪, 宫兆宁, 赵文吉, 等. 基于Logistic回归模型的北京市水库湿地演变驱动力分析[J]. 地理学报, 2012, 67(3): 357-367. [LI Hong, GONG Zhao-ning, ZHAO Wen-ji, et al. Driving forces analysis of reservoir wetland evolution in Beijing based on Logistic regression model. Acta Geographica Sinica, 2012, 67(3): 357-367.]
[31] Wang X H, Zheng D, Shen Y C. Land use change and its driving forces on the Tibetan Plateau during 1990-2000 [J]. Catena, 2008, 72(1): 56-66.
[32] 盛晟, 刘茂松, 徐驰, 等. CLUE-S模型在南京市土地利用变化研究中的应用[J]. 生态学杂志, 2008, 27(2): 235-239. [SHENG Sheng, LIU Mao-song, XU Chi, et al. Application of CLUE-S model in simulating land use changes in Nanjing metropolitan region. Chinese Journal of Ecology, 2008, 27(2): 235-239.]
[33] Aspinall R. Modelling land use change with generalized linear models—A multi-model analysis of change between 1860 and 2000 in Gallatin Valley, Montana [J]. Journal of Environmental Management, 2004, 72(1): 91-103.
[34] Lin Y P, Chu H J, Wu C F, et al. Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling—A case study [J]. International Journal of Geographical Information Science, 2011, 25(1): 65-87.
[35] Pontius R G, Schneider L C. Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA [J]. Agriculture, Ecosystems & Environment, 2001, 85(1/3): 239-248.
[36] Manel S, Williams H C, Ormerod S J. Evaluating presence-absence models in ecology: The need to account for prevalence [J]. Journal of Applied Ecology, 2001, 38(5): 921-931.
[37] 牛振国, 张海英, 王显威, 等. 1978-2008年中国湿地类型变化[J]. 科学通报, 2012, 57(16): 1400-1411. [NIU Zhen-guo, ZHANG Hai-ying, WANG Xian-wei, et al. Change of wetland type in China during 1978-2008. Chinese Science Bulletin, 2012, 57(16): 1400-1411.]
[38] 王芳, 朱跃华. 江苏省沿海滩涂资源开发模式及其适宜性评价[J]. 资源科学, 2009, 31(4): 619-628. [WANG Fang, ZHU Yue-hua. Development patterns and suitability assessment of tidal flat resources in Jiangsu Province. Resources Science, 2009, 31(4): 619-628.]
[39] 汪党献, 王浩, 马静. 中国区域发展的水资源支撑能力[J]. 水利学报, 2000(11): 21-26, 33. [WANG Dang-xian, WANG Hao, MA Jing. Water resources supporting capacity for regional development in China. Journal of Hydraulic Engineering, 2000(11): 21-26, 33.]
Outlines

/