Analysis of Spatial Distribution Features of Potential Vegetation NPP in Inner Mongolia Based on the IOCS

  • College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China

Received date: 2011-11-28

  Revised date: 2012-02-06

  Online published: 2012-11-20


Daily average temperature and precipitation observations during 1985-2009 are collected from 94 meteorological stations in Inner Mongolia and its surrounding areas. On the basis of Integrated Orderly Classification System (IOCS), the net primary productivity (NPP) of potential vegetation types in Inner Mongolia are simulated with the model of classification indices. Then the spatial distribution characteristics and the relationships between NPP and climatic factors are analyzed, and the results are shown as follows: 1) The NPP of Inner Mongolia shows nearly meridional distribution; the mean NPP is from 0 to 366.5 gC·m-2·a-1, and the bigger value region is located in the northeast of Greater Hinggan Mountains. 2) The potential vegetation type of the largest NPP is cool temperate perhumid mixed coniferous broad-leaved forest and its value is 231.8 gC·m-2·a-1; the second is warm temperate-subhumid forest steppe and its value is 222.8 gC·m-2·a-1; besides the minimum is warm temperate-extrarid warm temperate zonal desert, the value of which is only 0.6 gC·m-2·a-1. 3) For all the potential vegetation types, the maximum contribution to carbon sequestration potential is cool temperate-semiarid temperate typical steppe, the value of which is 23.6%; the minimum is cold temperate-semiarid montane steppe and the value is close to zero. 4) Each potential vegetation NPP has a higher partial correlation with moisture-humidity than annual cumulative temperature; by the IOCS, which is based on a moisture index, expressed as the ratio between annual precipitation and >0℃ annual cumulative, we can confirm that precipitation is the main factor, which impacts the NPP of potential vegetation types. 5) In Inner Mongolia, the NPP of potential vegetation types show the characteristics of wet-dry and latitude zonality obviously, and the NPP increases gradually as the change is with cold temperate→cool temperate→warm temperate and the diversification is with semiarid→subhumid→humid→perhumid; however, warm temperate-extrarid warm temperate zonal desert and warm temperate-arid warm temperate zonal semidesert do not comply with this law; the main reason is that higher temperature and less precipitation cannot meet the needs of vegetation growth.

Cite this article

ZHAO Jun, SHI Yin-fang, WANG Da-wei . Analysis of Spatial Distribution Features of Potential Vegetation NPP in Inner Mongolia Based on the IOCS[J]. JOURNAL OF NATURAL RESOURCES, 2012 , 27(11) : 1870 -1880 . DOI: 10.11849/zrzyxb.2012.11.006


[1] Braswell B H, Schinmel D S, Linder E, et al. The response of global terrestrial ecosystems to inter-annual temperature variability [J]. Science, 1997, 28:870-872.

[2] 周广胜, 张新时, 高素华, 等. 中国植被对全球变化反应的研究[J]. 植物学报, 1997, 39(9):879-888.[ZHOU Guang-sheng, ZHANG Xin-shi, GAO Su-hua, et al. Experiment and modeling on the responses of Chinese terrestrial ecosystems to global change. Acta Botanica Sinica, 1997, 39(9):879-888.]

[3] Scurlock J M O, Johnson K, Olson R J. Estimating net primary productivity from grassland biomass dynamics measurements [J]. Global Change Biology, 2002, 8:736-753.

[4] Field C B, Behrenfeld M J, Randerson J T, et al. Primary production of the biosphere: Integrating terrestrial and eceanic components [J]. Science, 1998, 281:237-240.

[5] 李博, 史培军, 任志弼. 中国北方草地草畜动态监测技术系统研究[M]. 北京:中国农业技术出版社, 1993:58.[LI Bo, SHI Pei-jun, REN Zhi-bi. Dynamic Monitoring Technology System of Grassland and Livestock in Northern China. Beijing: Chinese Agricultural Technology Press, 1993:58.]

[6] Leith H, Whittaker R H. Modeling the primary productivity of the world [M]//Primary Productivity of the Biosphere. New York: Springer-Verlag, 1975.

[7] Cramer W, Kicklighter D W, Bondeau A, et al. Comparing global models of terrestrial net primary productivity(NPP): Overview and key results [J]. Global Change Biology, 1999, 5(Supp 1):1-15.

[8] 李海亮, 赵军. 草地遥感估产的原理与方法[J]. 草业科学, 2009, 26(3):34-38.[LI Hai-liang, ZHAO Jun. Principles and methods of grassland yield estimation by using remote sensing technology. Pratacultural Science, 2009, 26(3):34-38.]

[9] Ruimy A, Saugier B. Methodology for the estimation of terrestrial net primary production from remotely sensed data [J]. Journal of Geophysical Research, 1994, 99:5263-5283.

[10] Esser G. Osnabruck biosphere model: Structure, construction, results [M]// Esser G, Overdieck D. Modern Ecology: Basic and Applied Aspects. New York: Elsevier, 1991:210-235.

[11] Liu J, Chen J. M, Cihlar J, et al. A process-based boreal ecosystem productivity simulator using remote sensing inputs [J]. Remote Sensing of Environment, 1997, 62:158-175.

[12] Melillo J M, McGuire A D, Kicklighter D W, et al. Global climate change and terrestrial net primary production [J]. Nature, 1993, 363:234-240.

[13] Hunt E R, Piper S C, Nemani R, et al. Global net carbon exchange and intra-annual atmospheric CO2 concentrations predicted by an ecosystem simulation model and three-dimensional atmospheric transport model [J]. Global Biogeochemical Cycles, 1996, 10: 431-456.

[14] Monteith J L. Solar radiation and productivity in tropical ecosystems [J]. Journal of Applied Ecology, 1972(9):747-766.

[15] Monteith J L. Climate and the Efficiency of Crop Production in Britain: Series B [M]. London: Philosophical Transactions of the Royal Society of London, 1977:277-294.

[16] Prince S D, Goward S N. Global primary production: A remote sensing approach [J]. Journal of Biogeography, 1995, 22:815-835.

[17] Potter C S, Randerson J, Fidd C B, et al. Terrestrial ecosystem production: a process model based on global satellite and surface data [J]. Global Biogeochemical Cycle, 1993, 7:811-841.

[18] Veroustraete F, Sabbe H, Eerens H. Estimation of carbon mass fluxes over Europe using the C-FIX model and Euroflux data [J]. Remote Sensing of Environment, 2002, 83:376-399.

[19] 冯宗炜, 王效科, 吴刚. 中国森林生态系统的生物量和生产力[M]. 北京:科学出版社, 1999.[FENG Zong-wei, WANG Xiao-ke, WU Gang. Chinese Forest Ecosystem Biomass and Productivity. Beijing: Science Press, 1999.]

[20] 陈国南. 用迈尔密模型测算我国生物生产量的初步尝试[J]. 自然资源学报, 1987, 2(3):270-278.[CHEN Guo-nan. Preliminary study on calculation of primary production of ecosystem in China with application of Miami model. Journal of Natural Resources, 1987, 2(3):270-278.]

[21] 侯光良, 游松才. 用筑后模型估算我国植物气候生产力[J]. 自然资源学报, 1990, 5(1):60-65.[HOU Guang-liang, YOU Song-cai. To calculate China’s plant-climate productive potentialities by Chikuzo model. Journal of Natural Resources, 1990, 5(1):60-65.]

[22] 张宪洲. 我国自然植被净第一性生产力的估算与分布[J]. 自然资源, 1993, 15(1):15-21.[ZHANG Xian-zhou. Calculation and distribution of natural vegetation NPP in China. Nature Resources, 1993, 15(1):15-21.]

[23] 周广胜, 张新时. 全球气候变化的中国自然植被的净第一性生产力研究[J]. 植物生态学报, 1996, 20(1):11-19.[ZHOU Guang-sheng, ZHANG Xin-shi. NPP of natural vegetation in China under global climate change. Acta Phytoecologica Sinica, 1996, 20(1):11-19.]

[24] 朴世龙, 方精云. 1982-1999年青藏高原植被净第一性生产力及其时空变化[J]. 自然资源学报, 2002, 17(3):373-380.[PIAO Shi-long, FANG Jing-yun. Terrestrial net primary production and its spatio-temporal patterns in Qinghai-Xizang Plateau, China during 1982-1999. Journal of Natural Resources, 2002, 17(3):373-380.]

[25] 王莺, 夏文韬, 梁天刚, 等. 基于MODIS植被指数的甘南草地净初级生产力时空变化研究[J]. 草业学报, 2010, 19(1):201-210.[WANG Ying, XIA Wen-tao, LIANG Tian-gang, et al. Spatial and temporal dynamic changes of net primary product based on MODIS vegetation index in Gannan grassland. Acta Prataculturae Sinica, 2010, 19(1):201-210.]

[26] 孙善磊, 周锁铨, 薛根元, 等. 环杭州湾地区近36年自然植被净初级生产力的变化特征[J]. 自然资源学报, 2010, 25(5):831-841.[SUN Shan-lei, ZHOU Suo-quan, XUE Gen-yuan, et al. Characteristics of net primary productivity of natural vegetation in the region around Hangzhou Bay in recent 36 years. Journal of Natural Resources, 2010, 25(5):201-210.]

[27] 肖向明, 王义凤, 陈佐忠. 内蒙古锡林河流域典型草原初级生产力和土壤有机质的动态及其对气候变化的反应[J]. 植物学报, 1996, 38(1):45-52.[XIAO Xiang-ming, WANG Yi-feng, CHEN Zuo-zhong. Dynamics of primary productivity and soil organic matter of typical steppe in the Xilin River basin of Inner Mongolia and their response to climate chance. Acta Botanica Sinica, 1996, 38(1):45-52.]

[28] 孙睿, 朱启疆. 中国陆地植被净第一性生产力及季节变化研究[J]. 地理学报, 2000, 55(1):36-45.[SUN Rui, ZHU Qi-jiang. Distribution and seasonal change of net primary productivity in China from April, 1992 to March, 1993. Acta Geographica Sinica, 2000, 55(1):36-45.]

[29] Lin H L. A new model of grassland Net Primary Productivity (NPP) based on the integrated orderly classification system of grassland . The Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 2009, 1:52-56.

[30] 公延明, 胡玉昆, 阿德力·麦地, 等. 高寒草原对气候生产力模型的适用性分析[J]. 草业学报, 2010, 19(2):7-13.[GONG Yan-ming, HU Yu-kun, Adeli Mai-dil, et al. Analysis of adaptation of a climate productivity model on alpine grassland. Acta Prataculturae Sinica, 2010, 19(2):7-13.]

[31] 章祖同. 内蒙古草地资源[M]. 呼和浩特:内蒙古人民出版社, 1990.[ZHANG Zu-tong. Inner Mongolia Grassland Resources. Huhhot: Inner Mongolia People’s Press, 1990.]

[32] 敖艳红, 黄国安, 邢旗, 等. 内蒙古草地资源利用现状及对策[C]//刘永志. 内蒙古草业研究. 呼和浩特:内蒙古人民出版社, 2004.[AO Yan-hong, HUANG Guo-an, XING Qi, et al. Inner Mongolia grassland resource utilization and countermeasures//LIU Yong-zhi. Inner Mongolia Grassland Research. Huhhot: Inner Mongolia People’s Press, 2004.]

[33] Zhao J, Li F, Fu H Y, et al. A DEM-based partition adjustment for the interpolation of annual cumulative temperature in China [C]//CHEN Jing-ming, PU Ying-xia. Geoinformatics 2007: Geospatial Information Science. Proceedings of the SPIE. 2007, 6753: 67532G.

[34] Ren J Z, Hu Z Z, Zhao J, et al. A grassland classification system and its application in China [J]. The Rangeland Journal, 2008, 30: 199-209.

[35] 任继周. 草原合理利用与草原类型[M]. 北京:中国农业出版社, 2004.[REN Ji-zhou. Rational Use of Grassland and Grassland Types. Beijing: China Agriculture Press, 2004.]

[36] 李刚, 辛晓平, 王道龙, 等. 改进CASA模型在内蒙古草地生产力估算中的应用[J]. 生态学杂志, 2007, 26(12):2100-2106.[LI Gang, XIN Xiao-ping, WANG Dao-long, et al. Application of improved CASA model in productivity evaluation of grassland in Inner Mongolia. Chinese Journal of Ecology, 2007, 26(12):2100-2106.]

[37] 李贵才. 基于MODIS数据和光能利用率模型的中国陆地净初级生产力估算研究. 北京:中国科学院遥感应用研究所, 2004.[LI Gui-cai. Estimation of Chinese Terrestrial Net Primary Production Using LUE Model and MODIS Data. Beijing: Institute of Remote Sensing Applications, CAS, 2004.]

[38] 王李娟, 牛铮, 旷达. 基于MODIS数据的2002~2006年中国陆地NPP分析[J]. 国土资源遥感, 2010(4):113-116.[WANG Li-juan, NIU Zheng, KUANG Da. An analysis of the terrestrial NPP from 2002 to 2006 in China based on MODIS data. Remote Sensing for Land & Resources, 2010(4):113-116.]

[39] 龙慧灵, 李晓兵, 王宏, 等. 内蒙古草原区植被净初级生产力及其与气候的关系[J]. 生态学报, 2010, 30(5):1367-1378.[LONG Hui-ling, LI Xiao-bing, WANG Hong, et al. Net primary productivity of grassland ecosystem and its relationship with climate in Inner Mongolia. Acta Ecologica Sinica, 2010, 30(5):1367-1378.]

[40] 朱文泉, 潘耀忠, 龙中华, 等. 基于GIS和RS的区域陆地植被NPP估算--以中国内蒙古为例[J]. 遥感学报, 2005, 9(3):114-121.[ZHU Wen-quan, PAN Yao-zhong, LONG Zhong-hua, et al. Estimating net primary productivity of terrestrial vegetation based on GIS and RS: A case study in Inner Mongolia, China. Journal of Remote Sensing, 2005, 9(3):114-121.]