Influences of Different Moisture Sources on δD and δ18O in Precipitation in Changsha, Hunan Province

  • 1. College of Resources and Environment Sciences, Hunan Normal University, Changsha 410081, China;
    2. School of Environment, National Centre for Groundwater Research and Training, Finders University, Adelaide 5001, AL, Australia

Received date: 2011-08-14

  Revised date: 2011-12-08

  Online published: 2012-08-20


Based on the collected precipitation samples and observed meteorological data during 2010 in Changsha, we analyzed the relation between δ18O in precipitation and temperature and precipitation amount, revealing the variations characteristic of δD and δ18O in precipitation, and discussed the influence of moisture transport on the variations of δ18O in precipitation. The results indicated that under the synoptic timescales, there was significant negative correlation between δ18O in precipitation and precipitation amount and temperature in Changsha. That is, the variations of δ18O in precipitation had significant precipitation amount effects and anti-temperature effects. We analyzed the snow samples and rain samples in Changsha by the linear regression, and obtained that the meteoric water line of large precipitation events and snowfall had large slope and interception.With the decrease in rainfall, the slope and interception of the meteoric water line also gradually decreased. It was mainly due to secondary evaporation that resulted in isotopic fractionation of light rainfall. We tracked the trajectory of air flow by HYSPLIT mode in Changsha and found that the moisture sources of the lower value of δ18O mainly came from the Bay of Bengal, the South China Sea and Western Pacific region in the monsoon rainfall(May-September); the moisture sources of the higher value of δ18O mainly came from moisture carried by the westerly wind belt and the local water vapor circulation during non-monsoon rainfall (October-April).

Cite this article

WU Hua-wu, ZHANG Xin-ping, GUAN Hua-de, SUN Guang-lu, HUANG Yi-min, ZHANG Ting-ting . Influences of Different Moisture Sources on δD and δ18O in Precipitation in Changsha, Hunan Province[J]. JOURNAL OF NATURAL RESOURCES, 2012 , 27(8) : 1404 -1414 . DOI: 10.11849/zrzyxb.2012.08.014


[1] Yamanaka T, Tsujimura M, Oyunbaatar D, et al. Isotopic variation of precipitation over eastern Mongolia and its implication for the atmospheric water cycle [J]. Journal of Hydrology, 2007, 333(1):21-34.
[2] Johnsen S, Dansgaard J W, White J W C. The origin of Arctic precipitation under present and glacial conditions [J]. Tellus, Series B, 1989, 41B:452-468.
[3] Hoffmann G, Werner M, Heimann M. Water isotope module of the ECHAM atmospheric general circulation model: A study on timescales from days to several years [J]. Journal of Geophysical Research, 1998, 103: 16871-16896.
[4] Jouzel J, Russell G L, Suozzo R J. Simulations of the HDO and H218O atmospheric cycles using the NASA-GISS General Circulation Model—The seasonal cycle for present day conditions [J]. Journal of Geophysical Research, 1987, 92: 14739-14760.
[5] Noone D C, Simmonds I. Associations between δ18O of water and climate parameters in a simulation of atmospheric circulation for 1979-95 [J]. Journal of Climate, 2002, 15:3150-3169.
[6] Yoshimura K, Oki T, Ohte N, et al. A quantitative analysis of short-term 18O variability with a rayleigh-type isotope circu lation model [J]. Journal of Geophysical Research, 2003, 108(D20), 4647, doi:10.1029/2003JD003477.
[7] 郑琰明, 钟巍, 彭晓莹, 等. 粤西云浮市大气降水δ18O与水汽来源的关系[J]. 环境科学, 2009, 30(3):637-643.
[8] 徐彦伟, 康世昌, 周石硚, 等. 青藏高原纳木错流域夏、秋季大气降水中δ18O与水汽来源及温度的关系[J]. 地理科学, 2007, 27 (5):718-723.
[9] Lisa M Baldini, Frank McDermott, James U L Baldini, et al. An investigation of the controls on Irish precipitation δ18O values on monthly and event timescales [J]. Climate Dynamics, 2010, 35(6):977-993.
[10] Lawrence J R, Gedzelman S D, White J W C, et al. Storm trajectories in eastern US D/H isotopic composition of precipitation [J]. Nature, 1982, 296: 638-640.
[11] Stephan Pfahl, Heini Wernli. Air parcel trajectory analysis of stable isotopes in water vapor in the eastern Mediterranean [J]. Journal of Geophysical Research, 2008, 113, D20104, doi:10.1029/2008JD009839.
[12] 刘相超, 宋献方, 夏军, 等. 东台沟实验流域降水氧同位素特征与水汽来源[J]. 地理研究, 2005, 24(2):196-205.
[13] 刘鑫, 宋献方, 夏军, 等. 黄土高原岔巴沟流域大气降水氢氧同位素特征及水汽来源初探[J]. 资源科学, 2007, 29(3):59-66.
[14] Craig H. Isotopic variations in meteoric waters [J]. Tellus, 1961(133):1702-1703.
[15] Clark I D, Fritz P, Michel F A, et al. Isotope hydrogeology and geothermonetry of the Mount Meager geothermal area [J]. Canadian Journal of Earth Sciences, 1982, 19:1454-1457.
[16] 张应华, 仵彦卿. 黑河流域中上游地区降水中氢氧同位素研究[J]. 冰川冻土, 2009, 31(1):342-391.
[17] 王锐, 刘文兆, 宋献方. 长武塬区大气降水中氢氧同位素特征分析[J]. 水土保持学报, 2008, 22(3):562-591.
[18] 章新平, 刘晶淼, 中尾正义, 等. 我国西南地区降水中过量氘指示水汽来源[J]. 冰川冻土, 2009, 31(4):613-619.
[19] 薛积彬, 钟巍, 赵引娟. 广州大气降水中δ18O与气象要素及季风活动之间的关系[J]. 冰川冻土, 2008, 30(5):761-768.
[20] 田立德, 马凌龙, 余武生, 等. 青藏高原东部玉树降水中稳定同位素季节变化与水汽输送[J]. 中国科学D辑, 2008, 38(8):986-992.
[21] Draxler R R, Hess G D. An overview of HYSPLIT_4 modeling system for trajectories, dispersion and deposition [J]. Australian Meteorological Magazine, 1998, 47:295-308.
[22] Draxler R R, Hess G D. Description of the HYSPLIT_4 modeling system . NOAA technical memorandum ERL ARL-224. 1997.
[23] 吴华武, 章新平, 孙光禄, 等. 湖南长沙地区大气降水中稳定同位素特征变化[J]. 长江流域资源与环境, 2012,21(5):540-546.
[24] 卫克勤, 林瑞芬. 论季风气候对我国雨水同位素组成的影响[J]. 地球化学, 1994, 23(1):33-41.
[25] 章新平, 刘晶淼, 孙维贞, 等. 中国西南地区降水中氧稳定同位素比率与相关气象要素之间关系的研究[J]. 中国科学D辑, 2006, 36(9):850-859.
[26] 刘东生, 陈正明, 罗可文. 桂林地区大气降水的氢氧同位素研究[J]. 中国岩溶, 1987, 6(3):225-231.
[27] 刘忠方, 田立德, 姚檀栋, 等. 水汽输送对雅鲁藏布江流域降水中稳定同位素的影响[J]. 地球科学进展, 2007, 22(8):842-849.