Special Column:Celebration of the 70th Anniversary of IGSNRR, CAS

The Enlightenment of Nature Peat Formation to Peat Substitute Research

Expand
  • 1. State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China;
    2. Peat and Mire Institute, Northeast Normal University, Changchun 130024, China;
    3. Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China

Received date: 2010-09-27

  Revised date: 2012-02-14

  Online published: 2012-07-20

Abstract

Peat is a carbon-rich resource by long-term accumulation in mire, and it plays not only the key role to global carbon conservation but serves also as the most important media to horticultural industry. There has been the controversy to peat whether being protected or utilized due to its scarcity and versatility, so researches on peat substitute will be of great significance for peat protection and horticultural production. The paper summarizes the process and key factors for peat formation so as to provide some new ideas and method for peat substitute research.

Cite this article

WANG Zhong-qiang, ZHANG Xin-yu, MENG Xian-min, SHENG Lian-xi, WANG Sheng-zhong, HE Chun-guang, HOU Jia-zhi . The Enlightenment of Nature Peat Formation to Peat Substitute Research[J]. JOURNAL OF NATURAL RESOURCES, 2012 , (7) : 1252 -1258 . DOI: 10.11849/zrzyxb.2012.07.016

References

[1] Maria S. Peatlands and Climate Change [M]. Jyvskyl: International Peat Society, 2008. [2] Chapman S, Bell J, Donnelly J D, Lilly A. Carbon stocks in Scottish peatlands [J]. Soil Use and Management, 2009, 25: 105-112. [3] 孟宪民. 我国泥炭资源的储量、特征与保护利用对策[J]. 自然资源学报, 2006, 21(4): 567-574. [4] 孟宪民, 王忠强, 刘永和, 等. 国外园艺泥炭利用现状与未来发展方向[J]. 腐植酸, 2003(1): 3-6. [5] 李谦盛, 郭世荣, 李式军. 利用工农业有机废弃物生产优质无土栽培基质[J]. 自然资源学报, 2002, 17(4): 515-519. [6] 崔秀敏, 王秀峰. 蔬菜育苗基质及其研究进展[J]. 天津农业科学, 2001(3): 38-42. [7] Noguera P, Abad M, Noguera V, et al. Coconut coir waste, a new and viable ecologically-friendly peat substitute [J]. Acta Horticulture, 2000, 517: 279-286. [8] 朱国鹏, 刘士哲, 陈业渊, 等. 基于椰糠的新型无土栽培基质研究(Ⅱ)——配方试种筛选[J]. 热带作物学报, 2005, 26(2): 100-106. [9] Gurin V, Lemaire F, Marfa O, et al. Growth of Viburnum tinus in peat-based and peat-substitute growing media [J]. Scientia Horticulturae, 2001, 89: 129-142. [10] 梁巧明, 刘运权, 叶庆生, 等. 4种废料基质对蝴蝶兰和石斛兰生长作用初探[J]. 园艺学报, 2006, 33(4): 890. [11] López-Garrido R, Murillo J M, López R. Substitution of peat for municipal solid waste and sewage sludge-based composts in nursery growing media: Effects on growth and nutrition of the native shrub Pistacia lentiscus L.[J]. Bioresource Technology, 2008, 99(6): 1793-1800. [12] Garcia-Gomez A, Bernal M P, Roig A. Growth of ornamental plants in two composts prepared from agroindustrial wastes [J]. Bioresource Technology, 2002, 83(2): 81-87. [13] Liyana A, Mika A. Sewage sludge sugarcane trash based compost and synthetic aggregates as peat substitutes in containerized media for crop production [J]. Journal of Hazardous Materials, 2010, 174(1/3): 700-706. [14] Paredes C, Moral R, Agulló E, et al. Composts from distillery wastes as peat substitutes for transplant production [J]. Resources, Conservation and Recycling, 2008, 52(5): 792-799. [15] Veeken A, Wilde V de, Woelders H, et al. Advanced bioconversion of biowaste for production of a peat substitute and renewable energy [J]. Bioresource Technology, 2004, 92: 121-131. [16] 张则有. 泥炭资源开发与利用[M]. 长春: 吉林科学技术出版社, 2000. [17] 柴岫. 泥炭地学[M]. 北京: 地质出版社, 1990. [18] Bauer E I. Modeling effects of litter quality and environment on peat accumulation over different time-scales [J]. Journal of Ecology, 2004, 92(4): 661-674. [19] Moore P D, Bellamy D J. Peatlands [M]. London: Elek Science, 1973. [20] 黄锡畴. 试论沼泽的分布和发育规律[J]. 地理科学, 1982, 2(3): 193-201. [21] 白光润, 王淑珍, 高峻, 等. 中国亚热带、热带泥炭形成的水热条件与微生物分解相关性[J]. 上海师范大学学报: 自然科学版, 2004, 33(3): 91-97. [22] Daniel C. Peatlands and Environmental Change [M]. New York: John Wiley & Sons Ltd., 2002. [23] 赵魁义. 中国沼泽志[M]. 北京: 科学出版社, 1999. [24] 殷书柏, 吕宪国. "泥炭气候成因说"的探讨[J]. 地理科学, 2006, 26(3): 321-327. [25] Andrei L B, Hirokazu F, Johannes L, et al. Rearrangement of bacterial community structure during peat diagenesis [J]. Soil Biology & Biochemistry, 2009, 41: 135-143. [26] Douterelo I, Goulder R, Lillie M. Response of the microbial community to water table variation and nutrient addition and its implications for in situ preservation of organic archaeological remains in wetland soils [J]. International Biodeterioration & Biodegradation, 2009, 63: 795-805. [27] Gamage N P D, Asaeda T. Decomposition and mineralization of Eichhornia crassipes litter under aerobic conditions with and without bacteria [J]. Hydrobiologia, 2005, 541: 13-27. [28] Anda M, Siswanto A B, Subandiono R E. Properties of organic and acid sulfate soils and water of a 'reclaimed’ tidal backswamp in Central Kalimantan, Indonesia [J]. Geoderma, 2009, 149: 54-65. [29] Carol M S S, Malcolm S C, Ross D J M. Sensitivity to acid deposition of dystrophic peat in great Britain [J]. AMBIO, 1993, 22(1): 22-26. [30] Halsey L A, Vitt D H, Trew D O. Influence of peatlands on the acidity of lakes in northeastern Alberta, Canada [J]. Water Air and Soil Pollution, 1997, 96: 17-38. [31] Clymo R S. The origin of acidity in sphagnum bogs [J]. The Bryologist, 1964(4): 427-431. [32] Rochefort L, Dale H V, Suzanne E B. Growth, production, and decomposition dynamics of sphagnum under natural and experimentally acidified conditions [J]. Ecology, 1990, 71(5): 1986-2000. [33] Zaccone C, Said-Pullicino D, Gigliotti G, et al. Diagenetic trends in the phenolic constituents of Sphagnum-dominated peat and its corresponding humic acid fraction [J]. Organic Geochemistry, 2008, 39: 830-838. [34] Pellerin S, Lagneau L A, Lavoie M, et al. Environmental factors explaining the vegetation patterns in a temperate peatland [J]. Comptes Rendus Biologies, 2009, 332: 720-731.
Outlines

/