Special Column:Celebration of the 70th Anniversary of IGSNRR, CAS

Spatial Difference of Regional Grass Changes based on ESDA at County Level in Beijing-Tianjin-Hebei Area

  • 1. Research School of Ecology & Economics for Poyang Area, Jiangxi University of Finance and Economics, Nanchang 330013, China;
    2. Institute of Geographical Sciences and Natural Resources Research, CAS, Beijing 100101, China

Received date: 2011-08-14

  Revised date: 2012-01-04

  Online published: 2012-07-20


Grassland serves as the basic resources and condition for the survival of human. It is meaningful for us to protect grassland and restore the areas that are seriously damaged gradually as well as refund the natural ecological grassland. It can not only make the land ecological service get a valid guarantee, but also play an important role in the land ecosystem equilibrium and the formation of the regional pattern for ecological security. Strengthening the research on grassland change at the county level about its characteristics, rules, spatial patterns etc., have important sense to guiding the protection of grassland at the county level and realizing the sustainable development of social economy. In this paper, based on global and local spatial autocorrelation analyses of exploratory spatial data, the spatial disparities about grassland change at the county level in Beijing-Tianjin-Hebei Area are discussed by using GIS and Geoda software. The conclusions are as follows: 1) During 1980-2000, the global spatial autocorrelation of forest land changes is significant. Global Moran’s I is the significant positive spatial correlation because it is 0.1844. The spatial clustering phenomenon about the changes of grassland in Beijing-Tianjin-Hebei Area appears on the whole. 2) There is an obviously temporal increase of Moran’s I value from 1980-1995 to 1995-2000. That is, there was a dramatic increase about grassland change’s spatial clustering in Beijing-Tianjin-Hebei Area. 3) The extent of grassland change is almost the same in some region by analyzing the grid figure of Local Moran’s I. Especially, the characteristic of spatial clustering about regional high value and low value is significant. 4) The counties of the positive spatial correlation in local indicators of spatial association are in the majority. The regions with the "high-high" correlation are mainly located in the north-west hilly area during 1995-2000. However, the regions with the "low-low" correlation were distributed in middle area during 1995-2000.

Cite this article

XIE Hua-lin, LI Xiu-bin, ZHANG Yan-ting, PENG Xiao-lin . Spatial Difference of Regional Grass Changes based on ESDA at County Level in Beijing-Tianjin-Hebei Area[J]. JOURNAL OF NATURAL RESOURCES, 2012 , (7) : 1224 -1232 . DOI: 10.11849/zrzyxb.2012.07.013


[1] Anselin L. Spatial Econometrics: Methods and Models [M]. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1988. [2] Anselin L. Local indicators of spatial association [J]. Geographical Analysis, 1995, 27: 93-115. [3] Getis A, Ord J K. Local spatial statistics: an overview //Lonley P, Batty M. Spatial Analysis: Modeling in a GIS Environment. Geoinformation International, Cambridge, UK, 1996. [4] Moran P A P. Notes on continuous stochastic phenomena [J]. Biometrika, 1950, 37: 17-23. [5] Geary R. The contiguity ratio and statistical mapping [J]. The Incorporated Statistician, 1954, 5(3): 115-145. doi: 10.2307/2986645. [6] Getis A, Ord K. The analysis of spatial association by use of distance statistics [J]. Geographical Analysis, 1992, 24: 189-206. [7] Cliff A D, Ord J K. Spatial Processes [M]. Pion, London, UK, 1981. [8] 李小建, 乔家君. 20世纪90年代中国县际经济差异的空间分析[J]. 地理学报, 2001, 56(2): 136-145. [9] 王世杰, 赵军. 甘肃省区域经济时空差异GIS-ESDA分析[J]. 干旱区资源与环境, 2009, 23(8): 5-8. [10] 蒲英霞, 葛莹, 马荣华等. 基于ESDA的区域经济空间差异分析——以江苏省为例[J]. 地理研究, 2005, 24(6): 965-974. [11] Cem Ertur, Wilfried koch. Regional disparities in the European Union and the enlargement process: An exploratory spatial data analysis, 1995-2000 [J]. Annals of Regional Science, 2006, 40: 723-765. [12] 马晓东, 马荣华, 徐建刚. 基于ESDA-GIS的城镇群体空间结构[J]. 地理学报, 2004, 59(6): 1048-1057. [13] 马荣华, 顾朝林, 蒲英霞. 苏南沿江城镇扩展的空间模式及其测度[J]. 地理学报, 2007, 62(10): 1011-1022. [14] 梅志雄, 黎夏. 基于ESDA和Kriging方法的东莞市住宅价格空间结构[J]. 经济地理, 2008, 28(5): 862-866. [15] 孟斌, 张景秋, 王劲峰, 等. 空间分析方法在房地产市场研究中的应用——以北京市为例[J]. 地理研究, 2005, 24(6): 956-964. [16] 潘竟虎, 石培基. 甘肃省农业现代化水平区域差异的ESDA-GIS分析[J]. 干旱区资源与环境, 2008, 22(10): 15-20. [17] 谢花林. 环鄱阳湖地区农业经济空间差异分析——基于探索性空间数据分析(ESDA)方法[J]. 农业现代化研究, 2010, 31(3): 299-303. [18] 郭斌, 任志远, 高孟绪. 基于ESDA-GIS的土地集约利用空间分异研究——以陕西为例[J]. 测绘科学, 2010, 35(4): 61-64. [19] 谢花林, 刘黎明, 李波, 等. 土地利用变化的多尺度空间自相关分析——以内蒙古翁牛特旗为例[J]. 地理学报, 2006, 61(4): 389-400. [20] 谢花林. 基于景观结构和空间统计学的区域生态风险分析[J]. 生态学报, 2008, 28(10): 5020-5026. [21] 谢花林. 基于景观结构的土地利用生态风险空间特征分析——以江西兴国县为例[J]. 中国环境科学, 2011, 31(4): 688-695.