Resources Evaluation

Ice Volume Changes and Their Characteristics for Representative Glacier against the Background of Climatic Warming —A Case Study of Urumqi Glacier No. 1, Tianshan, China

  • 1. College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China;
    2. State Key Laboratory of Cryospheric Sciences/Tianshan Glaciological Station, Cold and Arid Region Environment and Engineering Research Institute, CAS, Lanzhou 730000, China

Received date: 2010-07-09

  Revised date: 2011-01-27

  Online published: 2011-07-20


The changes of ice volume are closely related to the changes of glacial water resources and the contribution of melt water to the river runoff. Based on the ice thickness measured data, topographic maps and the long-term field observation data, this study has calculated the ice volume of Urumqi Glacier No.1 in different periods using GIS technique and analyzed the characteristics of their changes. Results indicated that the ice volume of Urumqi Glacier No.1 is 10736.7×104 m3, 10296.2×104 m3, 9989.4×104 m3, 8797.9×104 m3 and 8115.0×104 m3 in 1962, 1981, 1986, 2001 and 2006, respectively. During 1962-2006, the total ice volume of the glacier has reduced by 24.4% and the reduction rate of ice thickness, area and maximum length is 12.1%, 14.0% and 7.6%, respectively. The glacier was in a state of rapid shrinking with an accelerated tendency against the background of climatic warming in the past several decades. Before 1981, area shrinkage and terminus retreat was the key cause of the ice volume reduction; during 1981-2001, the reduction of ice volume was caused by three aspects: ice thickness, area and length, and area shrinkage was considered as the main factor; the noticeable reduction in ice volume is due to the intensive thinning of the ice thickness after 2001.

Cite this article

WANG Pu-yu, LI Zhong-qin, LI Hui-lin . Ice Volume Changes and Their Characteristics for Representative Glacier against the Background of Climatic Warming —A Case Study of Urumqi Glacier No. 1, Tianshan, China[J]. JOURNAL OF NATURAL RESOURCES, 2011 , 26(7) : 1189 -1198 . DOI: 10.11849/zrzyxb.2011.07.011


[1] 姚檀栋, 刘时银, 蒲健成, 等. 高亚洲冰川的近期退缩及其对西北水资源的影响[J]. 中国科学D辑, 2004, 34(6): 535-543. [2] 李忠勤, 李开明, 王林. 新疆冰川近期变化及其对水资源的影响研究[J]. 第四纪研究, 2010, 30(1): 96-106. [3] 李宗省, 何元庆, 王世金, 等. 1900—2007年横断山区部分海洋型冰川变化[J]. 地理学报, 2009, 64(11): 1319-1330. [LI Zong-xing, HE Yuan-qing, WANG Shi-jin, et al. Changes of some monsoonal temperate glaciers in Hengduan Mountains region during 1900-2007. Acta Geographica Sinica, 2009, 64(11): 1319-1330.] [4] 杨建平, 丁永建, 刘时银, 等. 长江黄河源区冰川变化及其对河川径流的影响[J]. 自然资源学报, 2003, 18(5): 595-602. [5] Molina C, Navarro F J, Calvet J, et al. Hurd Peninsula glaciers, Livingston, Island, Antarctica, as indicators of regional warming: Ice-volume changes during the period 1956-2000 [J]. Annals of Glaciology, 2007, 46: 43-49. [6] Koch J, Mennounos B, Clague J J. Glacier change in Garibaldi Provincial Park, southern coast mountains, British Columbia, since the Little Ice Age [J]. Global and Planetary Change, 2009, 66: 161-178. [7] IPCC. Climate change 2007: The physical science basis . Report of working group II of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2007. [8] 康尔泗, 程国栋, 董增川. 中国西北干旱区冰雪水资源与出山径流[M]. 北京: 科学出版社, 2002. [9] 杨针娘. 中国冰川水资源[M]. 兰州: 甘肃科学技术出版社, 1991. [10] 施雅风. 简明中国冰川目录[M]. 上海: 上海科学普及出版社, 2005: 9-16. [11] 王宗太, 刘潮海, 尤根祥, 等. 中国冰川目录Ⅰ(祁连山区)[M]. 兰州: 中国科学院兰州冰川冻土研究所, 1981: 4-5. [12] Liu S Y, Sun W X, Shen Y P, et al. Glacier changes since the Little Ice Age maximum in the western Qilian Shan, Northwest China, and consequences of glacier runoff for water supply [J]. Journal of Glaciology, 2003, 49(164): 117-124. [13] Bahr D B, Meier M, Peckman S. The physical basis of glacier volume area scaling [J]. Journal of Geophysical Research, 1997, 102(B9): 20355-20362. [14] Fischer A. Calculation of glacier volume from sparse ice-thickness data applied to Schaufelferner, Austria [J]. Journal of Glaciology, 2009, 55(191): 453-460. [15] 张祥松, 朱国才, 钱嵩林, 等. 天山乌鲁木齐河源1号冰川雷达测厚[J]. 冰川冻土, 1985, 7(2): 153-162. [16] 孙波, 何茂兵, 张鹏, 等. 天山1号冰川厚度和冰下地形探测与冰储量分析[J]. 极地研究, 2003, 15(1): 35-44. [17] 施雅风. 2050年前气候变暖冰川萎缩对水资源影响情景预估[J]. 冰川冻土, 2001, 23(4): 333-341. [18] 姚檀栋, 施雅风. 乌鲁木齐河气候、冰川、径流变化及未来趋势[J]. 中国科学B辑, 1988(6): 657-666. [19] 潘竟虎. 黄土丘陵沟壑区小流域土壤侵蚀情景模拟——以甘肃省静宁县清水沟流域为例[J]. 自然资源学报, 2009, 24(4): 577-584. [20] Binder D, Brückl E, Roch K H, et al. Determination of total ice volume and ice-thickness distribution of two glaciers in the Hohen Tauern region, Eastern Alps, from GPR data [J]. Annals of Glaciology, 2009, 50(51): 71-79. [21] 李忠勤. 天山乌鲁木齐河源1号冰川东支顶部出现冰面湖[J]. 冰川冻土, 2005, 27(1): 150-152. [22] 李忠勤, 韩添丁, 井哲帆, 等. 乌鲁木齐河源区气候变化和1号冰川40年观测事实[J]. 冰川冻土, 2003, 25(2): 117-123. [23] 李忠勤, 沈永平, 王飞腾, 等. 冰川消融对气候变化的响应——以乌鲁木齐河源1号冰川为例[J]. 冰川冻土, 2007, 29(3): 333-342. [24] Takeuchi N, Li Z Q. Characteristics of surface dust on Urumqi Glacier No.1 in the Tien Shan Mountains, China [J]. Arctic, Antarctic, and Alpine Research, 2008, 40(4): 744-750. [25] Chen J, Ohmura A. Estimation of alpine glacier water resources and their change since the 1870s, hydrology in mountainous regions-I //Proceeding of the Hydrological Measurements and the Water Cycle Symposia. IAHS Publication, 1990, 193: 127-135. [26] Driedger C L, Kennard P M. Ice volumes on Cascade volcanoes: Rainier, Mount Hood, Three Sisters, and Mount Shasta. U. S. . Geological Survey Professional Paper, 1986, 1365: 29. [27] Jóhannesson T, Raymond C, Waddington E. Time-scale for adjustment of glaciers to change in mass balance [J]. Journal of Glaciology, 1989, 35(121): 355-369. [28] 李慧林, 李忠勤, 沈永平, 等. 冰川动力学模式及其对中国冰川变化预测的适应性[J]. 冰川冻土, 2007, 29(2): 201-208.