Resources Research Methods

Estimating Soil Total Nitrogen Content Based on Hyperspectral Analysis Technology

  • 1. National Engineering and Technology Center for Information Agriculture, Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
    2. College of Information and Management, Henan Agricultural University, Zhengzhou 450002, China

Received date: 2010-09-14

  Revised date: 2010-12-24

  Online published: 2011-05-20


Quantitative relationships between soil total nitrogen content (TN) and hyperspectra in visible and near-infrared region (VIS-NIR) (350-2500 nm) were studied for five soil types (paddy soil, fluvo-aquic soil, salinized fluvo-aquic soil, saline soil, dark soil with lime concretion) collected from central and East China. Based on three different methods of spectral index, partial least square (PLS) and back propagation neural network (BPNN), the models were developed for estimating TN content in soil. The results showed that the newly developed PLS and BPNN models for estimating TN content based on the corrected first derivative spectra of 500-900 nm and 1350-1490 nm regions with Norris smoothing filter performed well, with R2 of calibration as 0.81 and 0.98, respectively. The R2, RMSE and RPD of validation were 0.81, 0.219 g·kg-1 and 2.28 for the method of PLS, and were 0.93, 0.149 g·kg-1 and 3.36 for the method of BPNN, respectively. In addition, DI (NDR872, NDR1482) composed of the corrected first derivative spectra of 872 nm and 1482 nm with Norris smoothing algorithm also had a good correlation with soil TN content. Testing of the estimating model based on DI(NDR872, NDR1482) with independent datasets from different types of soil samples resulted in R2, RMSE and RPD as 0.66, 0.53 g·kg-1 and 1.60, respectively. Comparison of the above three methods, the sequence of prediction accuracy was PLS-BPNN model>PLS>DI(NDR872, NDR1482), which indicated that the newly developed BPNN and PLS models were reliable for estimating soil TN content with high prediction accuracy, and DI(NDR872, NDR1482) maybe a good indicator of soil TN content.

Cite this article

ZHANG Juan-juan, TIAN Yong-chao, YAO Xia, CAO Wei-xing, MA Xin-ming, ZHU Yan . Estimating Soil Total Nitrogen Content Based on Hyperspectral Analysis Technology[J]. JOURNAL OF NATURAL RESOURCES, 2011 , 26(5) : 881 -890 . DOI: 10.11849/zrzyxb.2011.05.015


[1] Bendor E, Banin A. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties[J]. Soil Science Society of America Journal, 1995, 59: 364-372. [2] 屈晓晖, 庄大方, 彭望碌, 等. 基于ANN分类的农田遥感动态监测模型研究[J]. 自然资源学报, 2007, 22(2): 193-197. [3] 张春桂, 张星, 陈敏艳, 等. 福建近岸海域悬浮泥沙浓度遥感定量监测研究[J]. 自然资源学报, 2008, 23(1): 150-160. [4] Dalal R C, Henry R J. Simultaneous determination of moisture, organic carbon, and total nitrogen by near-infrared reflectance spectrophotometry[J]. Soil Science Society of America Journal, 1986, 50: 120-123. [5] 徐永明, 蔺启忠, 黄秀华, 等. 利用可见光/近红外反射光谱估算土壤总氮含量的实验研究[J]. 地理与地理信息科学, 2005, 21(1): 19-22. [6] 卢艳丽, 白由路, 王磊, 等. 黑土土壤中全氮含量的高光谱预测分析[J]. 农业工程学报, 2010, 26(1): 256-261. [7] Lee W S, Mylavarapu R S, Choe J S, et al. Study on soil properties and spectral characteristics in Florida. American Society for Aerospace Education Paper, 2001. [8] Reeves J, McCarty G, Mesinger J. Near infrared reflectance spectroscopy for the analysis of agricultural soils[J]. Journal of Near Infrared Spectroscopy, 1999, 7: 179-193. [9] Chang C, David Laird A. Near-infrared reflectance spectroscopic analysis of soil C and N[J]. Soil Science, 2002, 167: 110-116. [10] 孙建英, 李民赞, 郑立华, 等. 基于近红外光谱的北方潮土土壤参数实时分析[J]. 光谱学与光谱分析, 2006, 26(3): 426-429. [11] 赵锁劳, 彭玉魁. 我国黄土区土壤水分、有机质和总氮的近红外光谱分析[J]. 分析化学, 2002, 30(8): 978-980. [12] 于飞健, 闵顺耕, 巨晓棠, 等. 近红外光谱法分析土壤中的有机质和氮素[J]. 分析实验室, 2002, 1(3): 49-51. [13] 张雪莲, 李晓娜, 武菊英, 等. 不同类型土壤总氮的近红外光谱技术测定研究[J]. 光谱学与光谱分析, 2010, 30(4): 906-910. [14] 郑立华, 李民赞, 潘奕, 等. 基于近红外光谱技术的土壤参数BP神经网络预测[J]. 光谱学与光谱分析, 2008, 28(5): 1160-1164. [15] 张娟娟, 田永超, 朱艳, 等. 不同类型土壤的光谱特征及其有机质含量预测研究[J]. 中国农业科学, 2009, 42(9): 3154-3163. [16] Savitzky A, Golay M J E. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry, 1964, 36(8): 1627-1639. [17] Norris K H, Williams P C. Optimization of mathematical treatments of raw near-infrared signal in the measurement of protein in hard Red Spring wheat. I. Influence of particle size[J]. Cereal Chemistry, 1984, 62(2): 158-165. [18] 李强, 赵伟. MATLAB数据处理与应用[M]. 北京: 国防工业出版社, 2001: 1-60. [19] 刘波平, 秦华俊, 罗香, 等. PLS-BP法近红外光谱同时检测饲料组分的研究[J]. 光谱学与光谱分析, 2007, 27(10): 2005-2009. [20] 丁海泉, 卢启鹏, 朴仁官, 等. 土壤有机质近红外光谱分析组合波长的优选[J]. 光学精密工程, 2007, 12(15): 1946-1957. [21] Zornoza R, Guerrero C, Mataix-Solera J. Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils[J]. Soil Biology & Biochemistry, 2008, 40: 1923-1930. [22] Brunet D, Barthes B G, Chotte J L, et al. Determination of carbon and nitrogen contents in Alfisols, Oxisols and Ultisols from Africa and Brazil using NIRS analysis: Effects of sample grinding and set heterogeneity[J]. Geoderma, 2007, 139: 106-117. [23] 田永超, 杨杰, 姚霞, 等. 高光谱植被指数与水稻叶面积指数的定量关系[J]. 应用生态学报, 2009, 20(7): 1685-1690. [24] 李民赞. 光谱分析技术及其应用[M]. 北京: 科学出版社, 2006. [25] 徐永明, 蔺启忠, 王璐, 等. 基于高分辨率反射光谱的土壤营养元素估算模型[J]. 土壤学报, 2006, 43(9): 709-716. [26] 陆婉珍. 现代近红外光谱分析技术[M]. 北京: 中国石化出版社, 2000.