Resources Evaluation

Contribution Characteristics of Wind Erosion to the Sediment Yield in the Kuyehe River Watershed at Time Scales

Expand
  • 1. College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing 100083, China;
    2. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China

Received date: 2010-03-25

  Revised date: 2010-10-30

  Online published: 2011-04-29

Abstract

Wind erosion plays an important role on sediment yield in complex erosion zone by wind and water of the Loess Plateau. Contribution characteristics of wind erosion to the sediment yield in the Kuyehe River watershed at time scales was estimated based on the sediment discharge records at Shenmu Hydrological Station and meteorological measurements recorded at meteorological stations in and around the watershed. The results reveal that wind erosion is a principal contributor to sediment yield of the Kuyehe River watershed. At the monthly scale, sediment yield from wind erosion had a restore-release process. Wind erosion contribution rate was the highest in March and November-December, and was lower from April to September. Alluvial sediment in winter and spring was gradually discharged in summer. The wind erosion contribution rate at the monthly scale was consistent with the wind erosion climatic factor. The amount of sediment of July and August from wind erosion occupied 80.5% of the total amount of a year. At the seasonal scale, wind erosion contribution rate in summer was the lowest of 7.8%, and gradually increased in autumn and winter, then reached the highest in spring of 28.6%. At yearly scale, wind erosion contribution rate is about 17.2% at catchments upstream of Shenmu Hydrological Station in the Kuyehe River watershed during the period 1956-1970.

Cite this article

LI Qiu-yan, CAI Qiang-guo, FANG Hai-yan . Contribution Characteristics of Wind Erosion to the Sediment Yield in the Kuyehe River Watershed at Time Scales[J]. JOURNAL OF NATURAL RESOURCES, 2011 , 26(4) : 674 -682 . DOI: 10.11849/zrzyxb.2011.04.013

References

[1] 查轩, 唐克丽. 风蚀水蚀交错带小流域生态环境综合治理模式研究[J]. 自然资源学报, 2000, 15(1): 97-100. [2] Li M, Li Z B, Liu P L, et al. Using Cesium-137 technique to study the characteristics of different aspect of soil erosion in the wind-water erosion crisscross region on the Loess Plateau of China [J]. Applied Radiation and Isotopes, 2005, 62: 109-113. [3] 许炯心. 黄河中游多沙粗沙区的风水两相侵蚀产沙过程[J]. 中国科学D辑, 2000, 30(5): 540-548. [4] 高学田, 唐克丽. 风蚀水蚀交错带侵蚀能量特征[J]. 水土保持通报, 1996, 16(3): 27-31, 60. [5] 许炯心. 黄河中游支流悬移质粒度与含沙量、流量间的复杂关系[J]. 地理研究, 2003, 22(1): 39-48. [6] 陈正宜. 毛乌素沙漠与黄河粗泥沙来源的遥感分析[J]. 遥感信息, 1991(3): 22-24. [7] 杨根生, 刘阳宣, 史培军. 黄河沿岸风成沙入黄沙量估算[J]. 科学通报, 1988, 33(13): 1017-1017. [8] 冯国安. 黄河中游粗沙的来源主要是风沙[J]. 中国水土保持, 1992(3): 45-47. [9] 陈永宗, 景可, 蔡强国. 黄土高原现代侵蚀与治理[M]. 北京: 科学出版社, 1988. [10] 吴成基, 甘枝茂, 孙虎, 等. 河龙区间六条流域产粗沙量研究[J]. 人民黄河, 1997(4): 21-24. [11] 中国科学院黄土高原综合科学考察队. 黄土高原地区北部风沙区土地沙漠化综合治理[M]. 北京: 科学出版社, 1991. [12] 张胜利, 陈发中. 黄河中游多沙粗沙区风蚀产沙对黄河粗泥沙影响分析[J]. 中国水土保持, 1997(9): 13-18. [13] 许炯心. 风水两相作用对黄河流域高含沙水流的影响[J]. 中国科学D辑, 2005, 35(9): 899-906. [14] 师长兴. 风力侵蚀对无定河流域产沙作用定量分析[J]. 地理研究, 2006, 25(2): 285-293. [15] 董玉祥, 康国定. 中国干旱半干旱地区风蚀气候侵蚀力的计算与分析[J]. 水土保持学报, 1994, 8(3): 1-7. [16] FAO. A Provisional Methodology for Soil Degradation Assessment [M]. Rome, 1979. [17] 程天文, 程维新. 农田蒸发与蒸发力的测定及其计算方法//地理集刊, 第12号, 水文分析与实验. 北京: 科学出版社, 1980: 74-83. [18] XU Jiong-xin, HU Chun-hong, CHEN Jian-guo. Effect of suspended sediment grain size on channel sedimentation in the lower Yellow River and some implications [J]. Science in China Series E: Technological Sciences, 2009, 52(8): 2330-2339. [19] 冯国安. 黄河中游粗沙的来源主要是风沙(续) [J]. 中国水土保持, 1992(4): 44-47. [20] 方学敏. 黄河干流宁蒙河段风沙入黄沙量计算[J]. 人民黄河, 1993(4): 1-3. [21] 史学建, 刘宇梁, 黄静, 等. 再谈黄河中游粗泥沙的来源[J]. 人民黄河, 2007, 29: 62-63. [22] 张平仓, 查轩, 唐克丽. 水蚀风蚀交错带小流域不同地层侵蚀产沙量及其特征[J]. 土壤侵蚀与水土保持学报, 1997, 3(1): 1-9.
Outlines

/