Special Column:Celebration of the 70th Anniversary of IGSNRR, CAS

Spatial Pattern of Food Provision Sevice in Poyang Lake Region, China

  • 1. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China;
    3. National Meteorological Center, Beijing 100081, China

Received date: 2010-08-19

  Revised date: 2010-10-20

  Online published: 2011-02-20


Generally, in southern China with complex growing system, fragmentized and dispersed paddy field, and long-term overcast and rainy weather, the performance of using vegetation index (VI) time-series datasets derived from remote sensing imageries to extract multiple-cropping index was seriously constrained by the lower spatial resolution. Currently, the application of higher spatial resolution images can be the exclusive and effective way to extract the spatial pattern of different rice cropping systems annually in these regions. In this paper, firstly, the spatial distribution of paddy field in Poyang Lake Region (PLR) was obtained through one TM imagery interpretation. Secondly, the annual phenological calendar of various systems of paddy rice was defined with the agro-meteorological data. According to the significant characteristics that Normalized Difference Vegetation Index (NDVI) fluctuates sharply along with the growth process of paddy rice, map of NDVI for paddy field was derived from another TM image within the applicable time window. Then, different cropping systems of paddy rice were classified by means of Unsupervised Classification in Erdas Imagine 9.2. Finally, yield of each raster (100 m) was calculated with unit yield from local statistical department. The results showed that, late April to late June can be the time window to differentiate early rice and single-season rice, while early July till early August and middle September to early October could be the time window for the differentiation between single-season rice and late rice. Specifically, the planting areas of single-season and early/late rice are 3081.58 km2 and 3602.97 km2 in 2005, respectively, indicating that the multiple-cropping index is 153.9%. Single-season rice is generally distributed around the periphery of the built-up area, while double-season rice expanded along the delta. The total yield of paddy rice reached to nearly 16.5 million tons with a proportion of single-season to double-season approximating to 3 ∶7. The two seasons rice both had a higher yield in the lower reaches and delta area of the Ganjiang River.

Cite this article

LI Peng, JIANG Lu-guang, FENG Zhi-ming, ZHANG Jing-hua, YAN Hui-min, ZHAO Hui-xia . Spatial Pattern of Food Provision Sevice in Poyang Lake Region, China[J]. JOURNAL OF NATURAL RESOURCES, 2011 , 26(2) : 190 -200 . DOI: 10.11849/zrzyxb.2011.02.002


[1] 封志明, 张蓬涛, 宋玉. 粮食安全: 西北地区退耕对粮食生产的可能影响[J]. 自然资源学报, 2002, 17(3): 299-306. [2] 李晶, 任志远, 周自翔. 区域粮食安全性分析与预测——以陕西省关中地区为例[J]. 资源科学, 2005, 27(4): 89-94. [3] 傅泽强, 蔡运龙, 杨友孝, 等. 中国粮食安全与耕地资源变化的相关分析[J]. 自然资源学报, 2001, 16(4): 313-319. [4] 谢俊奇, 蔡玉梅, 郑振源, 等. 基于改进的农业生态区法的中国耕地粮食生产潜力评价[J]. 中国土地科学, 2004, 18(4): 31-37. [5] 封志明, 杨艳昭, 张晶, 等. 从栅格到县域: 中国粮食生产的资源潜力区域差异分析[J]. 自然资源学报, 2007, 22(5): 747-755. [6] 闫慧敏, 刘纪远, 曹明奎. 近20年中国耕地复种指数的时空变化[J]. 地理学报, 2005, 60(4): 559-566. [7] 沈学年, 刘巽浩. 多熟种植[M]. 北京: 农业出版社, 1983. [8] 卞新民, 冯金侠. 多元多熟种植制度复种指数计算方法探讨[J]. 南京农业大学学报, 1999, 22(1): 14-18. [9] 郭柏林. 我国复种指数变化特征、效益和潜力[J]. 经济地理, 1997, 17(3): 8-13. [10] 朱会义, 李秀彬, 辛良杰. 现阶段我国耕地利用集约度变化及其政策启示[J]. 自然资源学报, 2007, 22(6): 907-915. [11] 高帆. 我国粮食生产的地区变化: 1978—2003年[J]. 管理世界, 2005(9): 70-78. [12] 辛良杰, 李秀彬. 近年来我国南方双季稻区复种的变化及其政策启示[J]. 自然资源学报, 2009, 24(1): 58-65. [13] 范锦龙. 复种指数遥感监测方法研究. 北京: 中国科学院遥感应用研究所, 2003. [14] Defries R S, Townshend J. NDVI-derived land cover classifications at a global scale[J]. International Journal of Remote Sensing, 1994, 15(17): 3567-3586. [15] Xiao X, Boles S, Liu J, et al. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images[J]. Remote Sensing of Environment, 2005, 95(4): 480-492. [16] Lee R, Yu F, Price K P, et al. Evaluating vegetation phenological patterns in Inner Mongolia using NDVI time-series analysis[J]. International Journal of Remote Sensing, 2002, 23(12): 2505-2512. [17] Doraiswamy P C, Hatfield J L, Jackson T J, et al. Crop condition and yield simulations using Landsat and MODIS[J]. Remote Sensing of Environment, 2004, 92(4): 548-559. [18] Xin J, Yu Z, van Leeuwen L, et al. Mapping crop key phenological stages in the North China Plain using NOAA time series images[J]. International Journal of Applied Earth Observation and Geoinformation, 2002, 4(2): 109-117. [19] 彭代亮, 黄敬峰, 金辉民. 基于MODIS-NDVI的浙江省耕地复种指数监测[J]. 中国农业科学, 2006, 39(7): 1352-1357. [20] Peng D, Huete A R, Huang J, et al. Detection and estimation of mixed paddy rice cropping patterns with MODIS data[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(1): 13-23. [21] 左丽君, 董婷婷, 汪潇, 等. 基于MODIS/EVI的中国北方耕地复种指数提取[J]. 农业工程学报, 2009, 25(8): 141-146. [22] 闫慧敏, 曹明奎, 刘纪远, 等. 基于多时相遥感信息的中国农业种植制度空间格局研究[J]. 农业工程学报, 2005, 21(4): 85-90. [23] 朱孝林, 李强, 沈妙根, 等. 基于多时相NDVI数据的复种指数提取方法研究[J]. 自然资源学报, 2008, 23(3): 534-544. [24] 闫慧敏, 黄河清, 肖向明, 等. 鄱阳湖农业区多熟种植时空格局特征遥感分析[J]. 生态学报, 2008, 28(9): 4517-4523. [25] 姜鲁光, 封志明, 于秀波, 等. 退田还湖后鄱阳湖区洪水调蓄功能的多情景模拟[J]. 资源科学, 2010, 32(5): 817-823. [26] 张本, 陆光中, 朱宏富. 鄱阳湖研究[M]. 上海: 上海科学技术出版社, 1988: 573. [27] 中国政府网. 全国新增1000亿斤粮食生产能力规划(2009—2020). http://www.gov.cn/gzdt/2009-11/03/content_1455493.htm, 2009-11-03.[Government of China. National Plan for Expansion of Grain Production Capacity by 50 Billion Kilograms During 2009-2020. http://www.gov.cn/gzdt/2009-11/03/content_1455493.htm, 2009-11-03.] [28] Myneni R B, Hall F G, Sellers P J, et al. The interpretation of spectral vegetation indexes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2): 481-486. [29] 郑小波, 陈娟, 康为民, 等. 利用MODIS监测高原水稻生育期和长势的方法[J]. 中国农业气象, 2007, 25(4): 453-456. [30] 薛利红, 覃夏, 李刚华, 等. 江西鹰潭早稻关键生育期的NDVI诊断指标[J]. 农业工程学报, 2009, 25(2): 223-227. [31] 唐鹏钦, 姚艳敏, 吴文斌, 等. 基于遥感技术的耕地复种指数研究进展[J]. 中国农业资源与区划, 2010, 31(2): 21-27. [32] 李正国, 杨鹏, 周清波, 等. 基于时序植被指数的华北地区作物物候期/种植制度的时空格局特征[J]. 生态学报, 2009, 29(11): 6216-6226. [33] Xiao X, Boles S, Frolking S, et al. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images[J]. Remote Sensing of Environment, 2006, 100(1): 95-113.