Resources Evaluation

Study on Cloud Water Resources of Mountain Ranges in Xinjiang Based on Aqua Satellite Data

Expand
  • 1. College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China;
    2. Institute of Desert Meteorology of China Meteorological Administration, Urumqi 830002, China;
    3. Qinghai Meteorological Bureau, Xining 810001, China

Received date: 2010-04-09

  Revised date: 2010-12-02

  Online published: 2011-01-30

Abstract

CERES SSF Aqua MODIS Edition 1B/2B/2C cloud data from Clouds and the Earth’s Radiant Energy System (CERES) of NASA’s EOS from December, 2002 to December, 2007 were employed and the Altay, Tianshan and Kunlun mountains in Xinjiang were selected as research regions in this study. The variation features of cloud water resources were demonstrated through the analysis of multi-year average spatial distribution, seasonal and annual variation in total cloud coverage. The results showed that multi-year average of the total cloud coverage of the Altay Mountains, Tianshan Mountains and Kunlun Mountains were 43.47%, 44.91% and 52.72%, indicating the cloud water resources had potential for artificial enhancing precipitation; the measurement of the total cloud coverage of the Kunlun Mountains was the highest, but the precipitation conversion efficiency was relatively low, so there should be some potential for improving the precipitation efficiency by artificial enhancing methods at the Kunlun Mountains; the total cloud coverage of the three mountain ranges had obvious seasonal and annual variations with different features.

Cite this article

WANG Hong-qiang, CHEN Yong-hang, PENG Kuan-jun, CUI Cai-xia, ZHANG Guo-qing, LIU Qiong . Study on Cloud Water Resources of Mountain Ranges in Xinjiang Based on Aqua Satellite Data[J]. JOURNAL OF NATURAL RESOURCES, 2011 , 26(1) : 89 -96 . DOI: 10.11849/zrzyxb.2011.01.009

References

[1] 阿不力克木·阿不力孜, 商思臣. 新疆河流径流特征分析[J]. 干旱环境监测, 2003, 17(2): 112. [2] 丁贤荣. 高山增水效应及其水资源意义[J]. 山地学报, 2003, 21(6): 681-685. [3] 张家宝, 袁玉江. 试论新疆气候对水资源的影响[J]. 自然资源学报, 2002, 17(1): 28-34. [4] Rossow William B, Robert A Schiffer. Advances in understanding clouds from ISCCP [J]. Bulletin of the American Meteorological Society, 1999, 80(11): 2261-2287. [5] Minnis Patrick, Kratz David P, Coakley James A Jr, et al. Cloud Optical Property Retrieval//Clouds and the Earth’s Radiant Energy System(CERES)Algorithm Theoretical Basic Document, Volume III—Cloud Analyses and Determination of Improved Top of Atmosphere Fluxes, NASA RP-1376, 1995: 135-176. [6] 丁守国, 赵春生, 石广玉, 等. 近20年全球总云量变化趋势分析[J]. 应用气象学报, 2005, 16(5): 671-673. [7] 刘洪利, 朱文琴, 宜树华, 等. 中国地区云的气候特征分析[J]. 气象学报, 2003, 61(4): 466-473. [8] 宜树华, 刘洪利, 等. 中国西北地区云时空分布特征的初步分析[J]. 气象, 2003, 29(1): 7-11. [9] 魏丽, 钟强. 青藏高原云的气候学特征[J]. 高原气象, 1997, 16(1): 10-15. [10] 陈勇航, 黄建平, 陈长和, 等. 中国西北地区云水资源的时空分布特征[J]. 高原气象, 2005, 24(6): 905-912. [11] 陈勇航, 毛晓琴, 黄建平, 等. 西北典型地域条件下云量的对比分析[J]. 气候与环境研究, 2009, 14(1): 77-84. [12] Geier E B, Green R N, Kratz D P, et al. Cloud and the Earth’s Radiant Energy System (CERES) Data Management System SSF Collection Document [M]. Release 2, Version 1.2003: 243. [13] 林之光. 地形降水气候学[M]. 北京: 科学出版社, 1995: 1-13, 19, 24-32, 41-49, 96-105, 171-360. [14] 张学文. 云的含水量及其水循环[J]. 水科学进展, 2002, 13(1): 84-87. [15] 彭宽军, 陈勇航, 黄建平, 等. 新疆山区低层云水资源时空分布特征研究[J]. 水科学进展,2010, 21(5):653-659. [16] 史玉光. 新疆区域面雨量及空中水汽时空分布规律研究. 南京: 南京信息工程大学, 2008. [17] 李霞, 张广兴. 天山可降水量和降水转化率的研究[J]. 中国沙漠, 2003, 23(5): 509-513. [18] 李帅, 谢国辉, 何清, 等. 阿勒泰地区降水量、可降水量及降水转化率分析[J]. 冰川冻土, 2008, 30(4): 675-680. [19] 陈勇航, 彭宽军, 史玉光, 等. 天山山区与塔克拉玛干沙漠云水资源的对比分析[J]. 干旱区地理, 2009, 32(6): 888-890.
Outlines

/