Resources Ecology

A Study on Carbon Biogeochemical Cycles in Inner Mongolia Steppe, China

  • 1. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2009-07-30

  Revised date: 2010-06-28

  Online published: 2010-10-20


Carbon cycles of two steppes in Xilin River Basin were studied using biogeochemical cycle compartment theory. The major results include: 1) For the soil-palnt-atmosphere system of fenced Leymus chinensis steppe, the net carbon fixed by the plant compartment was 165.50 gC·m-2 during the growing season, the net emission from soil compartment was 174.36 gC·m-2,so the net carbon fixed by the system was -8.86 gC·m-2. In general, the input and output of carbon were nearly equivalent. The plant compartment was approximately balanced, too. 2) For the soil-plant-atmosphere system of fenced Stipa grandis steppe, the plant compartment fixed 130.04 gC·m-2 during the growing season, the net carbon emission from soil compartment was 128.28 gC·m-2, therefore the net carbon fixed by the system was 1.76 gC·m-2. The carbon input into plant compartment far exceeded the carbon output in wet year and it would become balanced in drought year. 3) The turnover of carbon element in Leymus chinensis steppe is larger than Stipa grandis steppe, which is caused by the more suitable geographical conditions. Water content is the main affecting factor of carbon cycles in Inner Mongolia steppe.

Cite this article

GENG Yuan-bo, LUO Guang-qiang, LI Ming-feng . A Study on Carbon Biogeochemical Cycles in Inner Mongolia Steppe, China[J]. JOURNAL OF NATURAL RESOURCES, 2010 , 25(10) : 1709 -1717 . DOI: 10.11849/zrzyxb.2010.10.009


[1] В А柯夫达. 土壤学原理: 上册[M]. 陆宝树, 周礼恺, 等译. 北京: 科学出版社, 1981: 67-88. [2] Н И巴齐列维奇. 草甸草原和草原土壤形成中灰分物质和氮素的生物小循环[M]//中国地理学会自然地理专业委员会. 生物地球化学省与植物—土壤元素交换. 北京: 科学出版社, 1965: 169-192. [3] Н П列梅佐夫. 元素生物循环在森林植被下成土过程中的作用[M]//中国地理学会自然地理专业委员会. 生物地球化学省与植物—土壤元素交换. 北京: 科学出版社, 1965: 155-168. [4] Ojima D, Parton W, Schimel D, et al. Modeling the effects of climatic and CO2 changes on grassland storage of soil C [J]. Water, Air and Soil Pollution, 1993, 70(1): 643-657. [5] Chou W W, Silver W L, Jackson R D, et al. The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall [J]. Global Change Biology, 2008, 14(6): 1382-1394. [6] Ellis S, Howe M T, Goulding K W T, et al. Carbon and nitrogen dynamics in a grassland soil with varying pH: Effect of pH on the denitrification potential and dynamics of the reduction enzymes [J]. Soil Biology and Biochemistry, 1998, 30: 359-367. [7] Frank A, Liebig M, Hanson J. Soil carbon dioxide fluxes in northern semiarid grasslands [J]. Soil Biology and Biochemistry, 2002, 34(9): 1235-1241. [8] Gershenson A, Bader N E, Cheng WX. Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition [J]. Global Change Biology, 2009, 15(1): 176-183. [9] Liu W X, Zhang Z, Wan S Q. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland [J]. Global Change Biology, 2009, 15(1): 184-195. [10] Ni J. Carbon storage in grasslands of China [J]. Journal of Arid Environments, 2002, 50(2): 205-218. [11] Ross D, Tate K, Newton P, et al. Carbon and nitrogen pools and mineralization in a grassland organic soil at a New Zealand carbon dioxide spring [J]. Soil Biology and Biochemistry, 2001, 33(6): 849-852. [12] Saito M, Kato T, Tang Y. Temperature controls ecosystem CO2 exchange of an alpine meadow on the northeastern Tibetan Plateau [J]. Global Change Biology, 2009, 15(1): 221-228. [13] Shimoda S, Murayama S, Mo W, et al. Seasonal contribution of C3 and C4 species to ecosystem respiration and photosynthesis estimated from isotopic measurements of atmospheric CO2 at a grassland in Japan [J]. Agricultural and Forest Meteorology, 2009, 149(3/4): 603-613. [14] Wang YS, Hu YQ, Ji BM, et al. An investigation on the relationship between emission/uptake of greenhouse gases and environmental factors in semiarid grassland [J]. Advances in Atmospheric Sciences, 2003, 20(1): 119-127. [15] Wohlfahrt G, Bahn M, Tappeiner U, et al. A multi-component, multi-species model of vegetation-atmosphere CO2 and energy exchange for mountain grasslands [J]. Agricultural and Forest Meteorology, 2001, 106(4): 261-287. [16] 陈全胜, 李凌浩, 韩兴国, 等. 水热条件对锡林河流域典型草原退化群落土壤呼吸的影响[J]. 植物生态学报, 2003, 27(2): 202-209. [17] 耿元波, 章申, 董云社, 等. 无牧草原生态系统营养元素的生物地球化学特征[J]. 应用生态学报, 2003, 14(2): 219-222. [18] 耿远波, 章申, 董云社, 等. 草原土壤的碳氮含量及其与温室气体通量的相关性[J]. 地理学报, 2001, 56(1): 44-53. [19] 李明峰, 董云社, 齐玉春, 等. 锡林河流域羊草群落春季CO2排放日变化特征分析[J]. 中国草地, 2003, 25(3): 9-22. [20] 苏永中, 赵哈林. 持续放牧和围封对科尔沁退化沙地草地碳截存的影响[J]. 环境科学, 2003, 24(4): 23-28. [21] 王跃思, 薛敏, 黄耀, 等. 内蒙古天然与放牧草原温室气体排放研究[J]. 应用生态学报, 2003, 14(3): 372-376. [22] Gao YZ, Giese M, Lin S, et al. Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity [J]. Plant and Soil, 2008, 307(1/2): 41-50. [23] Gong X, Brueck H, Giese KM, et al. Slope aspect has effects on productivity and species composition of hilly grassland in the Xilin River Basin, Inner Mongolia, China [J]. Journal of Arid Environments, 2008, 72(4): 483-493. [24] He NP, Yu Q, Wu L, et al. Carbon and nitrogen store and storage potential as affected by land-use in a Leymus chinensis grassland of northern China [J]. Soil Biology and Biochemistry, 2008, 40(12): 2952-2959. [25] Schneider K, Huisman JA, Breuer L, et al. Ambiguous effects of grazing intensity on surface soil moisture: A geostatistical case study from a steppe environment in Inner Mongolia, PR China [J]. Journal of Arid Environments, 2008, 72(7): 1305-1319. [26] Wang Z P, Li L H, Han X G, et al. Dynamics and allocation of recently photo-assimilated carbon in an Inner Mongolia temperate steppe [J]. Environmental and Experimental Botany, 2007, 59(1): 1-10. [27] 陈佐忠, 黄德华. 内蒙古锡林河流域羊草草原与大针茅草原地下部生产力和周转值的测定[M]//中国科学院内蒙古草原生态系统定位站. 草原生态系统研究: 第2集. 北京: 科学出版社, 1988: 132-138. [28] 姜恕, 戚秋慧, 孔德珍. 羊草草原群落和大针茅草原群落生物量的初步比较研究[M]//中国科学院内蒙古草原生态系统定位站. 草原生态系统研究: 第1集. 北京: 科学出版社, 1985: 12-23. [29] 吕怡忠, 赵玉萍, 夏荣基. 内蒙古锡林河流域栗钙土腐殖质特性的研究: Ⅰ. 围栏封育与自由放牧条件下土壤腐殖质特性的变化[M]//中科院内蒙古草原生态系统定位站. 草原生态系统研究: 第4集. 北京: 科学出版社, 1992: 171-180. [30] 肖向明, 王义凤, 陈佐忠. 内蒙古锡林河流域典型草原初级生产力和土壤有机质的动态及其对气候变化的反应[J]. 植物学报, 1996, 38(1): 45-52. [31] 姜恕. 中国科学院内蒙古草原生态系统定位站的建立和研究工作概述[M]//中国科学院内蒙古草原生态系统定位站. 草原生态系统研究: 第1集. 北京: 科学出版社, 1985: 1-11. [32] 李博, 雍世鹏, 李忠厚. 锡林河流域植被及其利用[M]//中国科学院内蒙古草原生态定位站. 草原生态系统研究: 第3集. 北京: 科学出版社, 1988: 84-183. [33] 吴征镒. 中国植被[M]. 北京: 科学出版社, 1980: 519-521. [34] 中国科学院内蒙古宁夏综合考察队. 内蒙古植被[M]. 北京: 科学出版社, 1985: 495-496. [35] 白永飞, 李凌浩, 王其兵, 等. 锡林河流域草原群落植物多样性和初级生产力沿水热梯度变化的样带研究[J]. 植物生态学报, 2000, 24(6): 667-673. [36] 中国土壤学会农业化学专业委员会. 土壤农业化学常规分析方法[M]. 北京: 科学出版社, 1984: 67-74. [37] Bokhari U, Singh J. Standing state and cycling of nitrogen in soil-vegetation components of prairie ecosystems [J]. Annals of Botany, 1975, 39(2): 273. [38] Mishra L. Nitrogen cycling in grasslands at Kanpur, India [J]. Plant and Soil, 1979, 53(3): 361-371. [39] Risser P, Parton W. Ecosystem analysis of the tallgrass prairie: Nitrogen cycle [J]. Ecology, 1982: 1342-1351. [40] Woodmansee R, Duncan D. Nitrogen and phosphorus dynamics and budgets in annual grasslands [J]. Ecology, 1980: 893-904. [41] Dahlman R, Kucera C. Root productivity and turnover in native prairie [J]. Ecology, 1965: 84-89. [42] Dahlman R, Kucera C. Tagging native grassland vegetation with carbon-14 [J]. Ecology, 1968: 1199-1203. [43] 齐玉春. 内蒙古草地生态系统生物地球化学循环中主要温室气体通量与碳平衡. 北京: 中国科学院地理科学与资源研究所, 2003: 67-133. [44] 刘立新, 董云社, 齐玉春, 等. 应用根去除法对内蒙古温带半干旱草原根系呼吸与土壤总呼吸的区分研究[J]. 环境科学, 2007, 28(4): 689-694. [45] 陈佐忠, 黄德华, 张鸿芳. 内蒙古锡林河流域羊草草原与大针茅草原地下生物量与降水量关系模型探讨[M]//中国科学院内蒙古草原生态系统定位站. 草原生态系统研究: 第2集. 北京: 科学出版社, 1988: 20-25.