Resources Research Methods

Progress in Ground-Based GPS Tomographying Atmospheric Water Vapor Resource

Expand
  • 1. Chinese Academy of Meteorological Science, Beijing 100081, China;
    2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Huafeng Group of Meteorological Audio & Video Information, China Meteorological Administration, Beijing 100081, China;
    4. Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China

Received date: 2010-04-26

  Revised date: 2010-07-07

  Online published: 2010-10-20

Abstract

Atmospheric water vapor is a kind of potential water resource. It has important strategic significance for the realization of the sustainable use of freshwater resources. Ground-based GPS atmospheric water vapor tomographic technology provides quantitative basis for the study of atmospheric water vapor resources three-dimensional distribution. The technology is also important for the rational development and utilization of water vapor resources. This paper introduces the basic principle of ground-based GPS atmospheric water vapor tomographic technology; and division of ground-based GPS tomographic network is one of the critical issues for the technology. The paper discusses the methods of dividing ground-based GPS tomographic network home and abroad. It also summarizes the three main algorithms of the technology used commonly. Finally, the paper gives the existing questions of the technology and suggestions of future development.

Cite this article

CAO Yu-jing, LIU Jing-miao, LIANG Hong, LI Wen-jing, CHU Yan-li . Progress in Ground-Based GPS Tomographying Atmospheric Water Vapor Resource[J]. JOURNAL OF NATURAL RESOURCES, 2010 , 25(10) : 1786 -1796 . DOI: 10.11849/zrzyxb.2010.10.016

References

[1] Rocken C, Ware R, Hove T V, et al. Sensing atmospheric water vapor with the global positioning system [J]. Geophysical Research Letters, 1993, 20(23): 2631-2634. [2] 梁宏, 刘晶淼, 李世奎. 青藏高原及周边地区大气水汽资源分布和季节变化特征分析[J]. 自然资源学报, 2006, 21(4): 527-534. [3] 李青春, 张朝林, 楚艳丽, 等. GPS遥感大气可降水量在暴雨天气过程分析中的应用[J]. 气象, 2007, 33(6): 52-58. [4] 万蓉, 郑国光. 地基GPS在暴雨预报中的应用进展[J]. 气象科学, 2008, 28(6): 698-702. [5] Ding J C, Yang Y M,Ye Q X. Moisture analysis of a squall line case based on precipitable water vapor data from a ground-based GPS network in the Yangtze River Delta [J]. Advances in Atmospheric Sciences, 2007, 24(3): 409-420. [6] Davis J L, Elolsegui P, Gradinarsky L P.Sensing atmospheric structure using small-scale space geodetic networks [J]. Geophysical Research Letters, 1991,26(16): 2445-2448. [7] Zhu W Y, SONG S L, Ding J C. 3D water-vapor tomography with Shanghai GPS network to improve forecasted moisture field [J]. Chinese Science Bulletin, 2004, 51(5): 607-614. [8] Niell A E, Solheim F S. Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI [J]. Journal of Atmospheric and Oceanic Technology, 2000, 18: 830-850. [9] Braun J, Rocken C, Liljegren J. Comparisons of line-of-sight water vapor observations using the global positioning system and a pointing microwave radiometer [J]. Journal of Atmospheric and Oceanic Technology, 2003, 20: 606-612. [10] Bevis M, Businger S, Herring T, et al. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system [J]. Journal of Geophysical Research, 1992, 97(D14): 15787-15801. [11] Yuan L L, Anthes R A, Ware R H, et al. Sensing climate change using the global positioning system [J]. Journal of Geophysical Research, 1993, 98(D8):14925-14937. [12] 毛节泰. GPS的气象应用[J]. 气象科技, 1993(4): 45-49. [13] Flores A, et al. Tomography of the lower troposphere using a small dense network of GPS receivers [J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(2): 439-447. [14] Bruce M, Runciman H K. Tomography of the ionosphere: Four-dimensional simulations [J]. Radio Science, 1998, 33(1): 109-128. [15] Hirahara K. Local GPS tropospheric tomography [J]. Earth Planets Space, 2000, 52: 935-939. [16] Flores A, Gradinarsky L P,El'osegui P, et al. Sensing atmospheric structure: Tropospheric tomographic results of the small-scale GPS campaign at the Onsala Space Observatory [J]. Earth Planets Space, 2000, 52: 941-945. [17] Braun J,Rocken C. Water vapor tomography within the planetary boundary layer using GPS . International Workshop on GPS Meteorology-GPS Meteorology: Ground-Based and Space-Borne application, Japan, 2003, 3-09-1-3-09-4. [18] Flores A, Ruffini G, Rius A. 4D tropospheric tomography using GPS slant wet delays [J]. Annales Geophysicae, 2000, 18: 223-234. [19] Braun J, Rocken C, Ware R. Validation of line-of-sight water vapor measurements with GPS [J]. Radio Science, 2001, 36(3): 459-472. [20] Alber C, Ware R, Rocken C, et al. GPS surveying with 1 mm precision using corrections for atmospheric slant path delay [J]. Geophysical Research Letters, 1999, 24(15): 1859-1862. [21] Seko H, Shimada S, Nakamura H, et al. Three-dimensional distribution of water vapor estimated from tropospheric delay of GPS data in a mesoscale precipitation system of the Baiu front [J]. Earth Planets Space, 2000, 52: 927-933. [22] Noguchi W, Yoshisara T, Tsuda T, et al. Time-height distribution of water vapor derived by moving cell tomography during Tsukuba GPS campaigns [J]. Journal of the Meteorological Society of Japan, 2004, 82(1B): 561-568. [23] 宋淑丽, 朱文耀, 丁金才, 等. 上海GPS层析水汽三维分布改善数值预报湿度场[J]. 科学通报, 2005, 50(20): 2271-2277. [24] Bi Y M, Mao J T, Li C C. Preminary results of 4-D water vapor tomography in the troposphere using GPS [J]. Advances in Atmospheric Sciences, 2006, 23(6): 551-560. [25] 张双成, 叶世榕, 万蓉, 等. 基于Kalman滤波的断层扫描初步层析水汽湿折射率分布[J]. 武汉大学学报: 信息科学版, 2008, 33(8): 797-799. [26] Bastin S, Champollion C, Bock O, et al. On the use of GPS tomography to investigate water vapor variability during a Mistral/sea breeze event in southeastern France [J]. Journal of Applied Meteorology and Climatology, 2005, 46(2): 167-182. [27] Champollion C, Flamant C, Bock O, et al. Mesoscale GPS tomography applied to the 12 June 2002 convective initiation event of IHOP_2002 [J]. Quarterly Journal of the Royal Meteorological Society, 2009, 135: 645-662. [28] Troller M, Geiger A,Brockmann E. Tomographic determination of the spatial distribution of water vapor using GPS observations [J]. Advances in Space Research, 2006, 37: 2211-2217. [29] Miidla P, Rannat K, Uba P. Tomographic approach for tropospheric water vapor detection [J]. Computational Methods in Applied Mathematics, 2008, 8(3): 263-278. [30] Miidla P, Rannat K, Uba P. Simulated studies of water vapour tomography [J]. Wseas Transactions on Environment and Development, 2008, 4(3): 181-190. [31] Champolliona C, Massona F, Bouin M N, et al. GPS water vapor tomography: Preliminary results from the ESCOMPTE field experiment [J]. Atmospheric Research, 2005, 74: 253-274. [32] 毕研盟, 毛节泰, 毛辉. 海南GPS 网探测对流层水汽廓线的试验研究[J]. 应用气象学报, 2008, 19(4): 413-419. [33] 宋淑丽. 地基GPS网对水汽三维分布的监测及其在气象学中的应用. 上海: 中国科学院研究生院(上海天文台), 2004. [34] Lachapelle G, Zhang J. Precise estimation of residual tropospheric delays using a regional GPS network for real-time kinematic applications [J]. Journal of Geodesy, 2001, 75: 255-266. [35] Bevis M, Duan J,Fang P. GPS Meteorology: Direct estimation of the absolute value of precipitable water vapor [J]. Journal of Application Meteorology, 1996, 35: 830-838. [36] 程晓, 张艳梅, 鄂东臣, 等. 在PC机上运行GAMIT/GLOBK软件包[J]. 测绘通报, 2003(1): 4-6. [37] Hugentobler U, Schaer S,Fridez P. Bernese GPS Software Version 4. 2[M]. Swiss: Astronomical Institute, University of Berne, 2001: 191-194. [38] 李成才, 毛节泰. 地基GPS遥感大气水汽总量中的"静力延迟"和"湿延迟"[J]. 大气科学, 2004, 28(5): 796-799. [39] Davis J L, Elgered G, Niell A E. Ground-based measurement of gradients in the "wet" radio refractivity of air [J]. Radio Science, 1993, 28(6): 1003-1018. [40] MacMillan D S. Atmospheric gradients from very long baseline interferometry observations [J]. Geophysical Research Letters, 1995, 22: 1041-1044. [41] Niell A E. Improved atmospheric mapping functions for VLBI and GPS [J]. Earth Planets Space, 2000, 52: 699-702. [42] Niel A E. Global mapping functions for the atmosphere delay at radio wavelengths [J]. Journal of Geophysical Research, 1996, 101(B2): 3227-3246. [43] Boehm J, Niell A E, Tregoning P, et al. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data [J]. Geophysical Research Letters, 2006, 33: 1-4. [44] Bar- Sever Y E, Kroger P M,Borjesson J A. Estimating horizontal gradients of tropospheric path delay with a single GPS receiver [J]. Journal of Geophysical Research, 1998, 103(B3): 5019-5035. [45] 王小亚, 朱文耀, 严豪健, 等. 地面GPS 探测大气可降水量的初步结果[J]. 大气科学, 1999, 23(5): 606-612. [46] 林茂琼, 陈增强, 袁著祉. 递推阻尼最小二乘法[J]. 高校应用数学学报A辑, 2000, 15(1): 113-118. [47] 宋淑丽, 朱文耀, 程宗颐, 等. GPS信号斜路径方向水汽含量的计算方法[J]. 天文学报, 2004, 45(3): 339-345. [48] Gradinarsky L, Jarlemark P. GPS tomography using the permanent network in goteborg: Simulations . 2002 IEEE, 2002: 128-134. http: //ieeexplore. ieee. org. [49] 陆如华, 徐传玉, 张玲, 等. 卡尔曼滤波的初值计算方法及其应用[J]. 应用气象学报, 1997, 8(1): 35-42. [50] 吕戈培, 殷海涛, 黄丁发, 等. 成都地区大气平均温度建模及其在GPS/PWV计算中的应用研究[J]. 测绘科学, 2008, 33(4): 104-105. [51] Bender M, Dick G, Wickert J, et al. Estimates of the information provided by GPS slant data observed in Germany regarding tomographic applications [J]. Journal of Geophysical Research, 2009, 114(D06303): 1-11. [52] Bender M, Raabe A. Preconditions to ground based GPS water vapour tomography [J]. Annales. Geophysicae., 2007, 25: 1727-1734. [53] 宋淑丽, 朱文耀, 廖新浩. 地基GPS气象学研究的主要问题及最新进展[J]. 地球科学进展, 2004, 19(2): 251-259. [54] 陈俊勇. 全球导航卫星系统进展及其对导航定位的改善[J]. 大地测量与地球动力学, 2009, 29(2): 1-3.
Outlines

/