Resources Research Methods

Surface Modelling of Annual Precipitation in China

  • 1. State Key Laboratory of Resource and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. Key Laboratory of Data Mining & Information Sharing of Ministry of Education, Spatial Information Research Center of Fujian Province, Fuzhou University, Fuzhou 350002, China

Received date: 2009-12-20

  Revised date: 2010-05-18

  Online published: 2010-07-10


Based on the precipitation data from 781 sampling points (755 meteorological stations and 26 suppositional stations) in the study area, the formulae used to estimate the annual mean precipitation have been obtained, and the characteristics of the geographic or topographic effects have been presented. The impact factors included longitude, latitude, elevation, terrain aspect and unobstructed factor are significant factors explaining annual mean precipitation spatial variability in China. Detrending of annual precipitation distribution, the residual anomaly for local change was simulated by HASM algorithm. Setting suppositional meteorological stations over regions with no measured data, a new method enabled us to estimate precipitation in regions with sparse measured sites. The results show that the estimated annual precipitation correctly replicates real spatial distribution of precipitation qualitatively and quantitatively.

Cite this article

LU Yi-min, YUE Tian-xiang, CHEN Chuan-fa, WANG Qing, WANG Qin-min . Surface Modelling of Annual Precipitation in China[J]. JOURNAL OF NATURAL RESOURCES, 2010 , 25(7) : 1194 -1205 . DOI: 10.11849/zrzyxb.2010.07.015


[1] Yue T X, Fan Z M, Liu J Y. Scenarios of land cover in China [J]. Global and Planetary Change, 2007, 55(4): 317-342. [2] Moulin L, Gaume E, Obled C. Uncertainties on mean areal precipitation: Assessment and impact on streamflow simulations [J]. Hydrology and Earth System Sciences, 2009, 13(2): 99-114. [3] Riha S J, Wilks D S, Simoens P. Impact of temperature and precipitation variability on crop model predictions [J]. Climatic Change, 1996, 32(3): 293-311. [4] de Wit A J W, Boogaard H L, van Diepen C A. Spatial resolution of precipitation and radiation: The effect on regional crop yield forecasts [J]. Agricultural and Forest Meteorology, 2005, 135(1/4): 156-168. [5] Yue T X, Tian Y Z, Liu J Y, et al. Surface modeling of human carrying capacity of terrestrial ecosystems in China [J]. Ecological Modelling, 2008, 214(2/4): 168-180. [6] 朱会义, 刘述林, 贾绍凤. 自然地理要素空间插值的几个问题[J]. 地理研究, 2004, 23(4): 425-432. [7] Gold C M, Remmele P R, Roos T. Voronoi methods in GIS [J]. Lecture Notes in Computer Science, 1997, 1340: 21-36. [8] Legates D R, Willmott C J. Mean seasonal and spatial variability in global surface air temperature [J]. Theoretical and Applied Climatology, 1990, 41(1): 11-21. [9] Szolgay J, Parajka J, Kohnová S, et al. Comparison of mapping approaches of design annual maximum daily precipitation [J]. Atmospheric Research, 2009, 92(3): 289-307. [10] Alsamamra H, Ruiz-Arias J A, Pozo-Vázquez D, et al. A comparative study of ordinary and residual kriging techniques for mapping global solar radiation over southern Spain [J]. Agricultural and Forest Meteorology, 2009: 1343-1357. [11] Hofierka J, Parajka J, Mitasova H, et al. Multivariate interpolation of precipitation using regularized spline with tension [J]. Transactions in GIS, 2002, 6(2): 135-150. [12] Peel M C, McMahon T A, Pegram G G S. Assessing the performance of rational spline-based empirical mode decomposition using a global annual precipitation dataset [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2009, 465(2106): 1-19. [13] 岳天祥, 杜正平. 高精度曲面建模与经典模型的误差比较分析[J]. 自然科学进展, 2006, 16(8): 986-991. [14] Shi W J, Liu J Y, Du Z P, et al. Surface modelling of soil pH [J]. Geoderma, 2009, 150(1/2): 113-119. [15] Nalder I A, Wein R W. Spatial interpolation of climatic Normals: Test of a new method in the Canadian boreal forest [J]. Agricultural and Forest Meteorology, 1998, 92(4): 211-225. [16] Price D T, McKenney D W, Nalder I A, et al. A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data [J]. Agricultural and Forest Meteorology, 2000, 101(2/3): 81-94. [17] 林忠辉, 莫兴国, 李宏轩, 等. 中国陆地区域气象要素的空间插值[J]. 地理学报, 2002, 57(1): 47-56. [18] Daly C, Neilson R P, Phillips D L. A statistical-topographic model for mapping climatological precipitation over mountainous terrain [J]. Journal of Applied Meteorology, 1994, 33(2): 140-158. [19] Daly C, Halbleib M, Smith J I, et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States [J]. International Journal of Climatology, 2008, 28(15): 2031-2064. [20] 阎洪. 薄板光顺样条插值与中国气候空间模拟[J]. 地理科学, 2004, 24(2): 163-169. [21] Basist A, Bell G D, Meentemeyer V. Statistical relationships between topography and precipitation patterns [J]. Journal of Climate, 1994, 7(9): 1305-1315. [22] Marquínez J, Lastra J, García P. Estimation models for precipitation in mountainous regions: The use of GIS and multivariate analysis [J]. Journal of Hydrology (Amsterdam), 2003, 270(1/2): 1-11. [23] Zhu A X, Hudson B, Burt J, et al. Soil mapping using GIS, expert knowledge, and fuzzy logic [J]. Soil Science Society of America Journal, 2001, 65(5): 1463-1472. [24] Tomassetti B, Verdecchia M, Giorgi F. NN5: A neural network based approach for the downscaling of precipitation fields—Model description and preliminary results [J]. Journal of Hydrology, 2009, 367(1/2): 14-26. [25] Collins F C, Bolstad P V. A comparison of spatial interpolation techniques in temperature estimation//Third International Conference/Workshop on Integrating GIS and Environmental Modeling. Santa Fe, New Mexico, USA. 1996. [26] Nalder I A, Wein R W. Spatial interpolation of climatic Normals: Test of a new method in the Canadian boreal forest [J]. Agricultural and Forest Meteorology, 1998, 92(4): 211-225. [27] Brynjólfsson S, lafsson H. Precipitation in the Svarfaardalur region, North-Iceland [J]. Meteorology and Atmospheric Physics, 2009, 103(1): 57-66. [28] 舒守娟, 王元, 熊安元. 中国区域地理, 地形因子对降水分布影响的估算和分析[J]. 地球物理学报, 2007, 50(6): 1703-1712. [SHU Shou-juan, WANG Yuan, XIONG An-yuan. Estimation and analysis for geographic and orographic influences on precipitation distribution in China. Chinese J. Geophys., 2007, 50(6): 1703-1712.] [29] Immerzeel W W, Rutten M M, Droogers P. Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula [J]. Remote Sensing of Environment, 2009, 113(2): 362-370. [30] 崔林丽, 史军, 杨引明, 等. 中国东部植被NDVI 对气温和降水的旬响应特征[J]. 地理学报, 2009, 64(7): 850-860. [31] Spadavecchia L, Williams M. Can spatio-temporal geostatistical methods improve high resolution regionalisation of meteorological variables? [J] Agricultural and Forest Meteorology, 2009, 149(6/7): 1105-1117. [32] 穆兴民, 陈国良. 黄土高原降水与地理因素的空间结构趋势面分析[J]. 干旱区地理, 1993, 16(2): 71-76. [33] 孙鹏森, 刘世荣, 李崇巍. 基于地形和主风向效应模拟山区降水空间分布[J]. 生态学报, 2004, 24(9): 1910-1915. [34] Franke J, Hntzschel J, Goldberg V, et al. Application of a trigonometric approach to the regionalization of precipitation for a complex small-scale terrain in a GIS environment [J]. Meteorological Applications, 2008, 15: 483-490. [35] 辜智慧, 史培军, 陈晋. 气象观测站点稀疏地区的降水插值方法探讨——以锡林郭勒盟为例[J]. 北京师范大学学报: 自然科学版, 2006, 42(2): 204-208. [36] Wang J, Rich P M, Price K P. Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA [J]. International Journal of Remote Sensing, 2003, 24(11): 2345-2364. [37] Sun R H, Zhang B P, Tan J. A multivariate regression model for predicting precipitation in the Daqing Mountains [J]. Mountain Research and Development, 2008, 28(3): 318-325. [38] Guan H, Hsu H H, Makhnin O, et al. Examination of selected atmospheric and orographic effects on monthly precipitation of Taiwan using the ASOADeK model [J]. International Journal of Climatology, 2008, 29: 1171-1181.