Special Column:Celebration of the 70th Anniversary of IGSNRR, CAS

A Daily Precipitation Grid Dataset with 0.1°Resolution in Changjiang River Valley and Its Precision

  • State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China

Received date: 2007-01-12

  Revised date: 2007-10-17

  Online published: 2008-02-01


A spatial interpolation by combining the Barnes scheme and precipitation frequency is developed according to daily rainfall characteristics. With the interpolation, a daily grid precipitation dataset, which covers a domain ranging from 99° to 123°E and 24° to 36°N and has a 0.1 longitudinal and latitudinal resolution, is obtained by utilizing daily precipitation data of basic observation stations in China and ordinary observation stations in 15 provinces in the vicinity of the Changjiang valley during 1971 to 2005. The error estimation of the grid dataset is accessed through cross-validation statistics. The statistics show the combining scheme for daily precipitation interpolation is not only with small mean biased error, mean absolute error and mean square error as well as high correction coefficient, but also close to the observation variation and frequency. The primary analysis indicates that the datasets provide a finer precipitation distribution. And the years with the greatness (smallness) of the annual area precipitation, in particularly the summertime area precipitation, correspond to the distinguished flooding (drought) processes occurred in the Changjiang valley. So the daily precipitation datasets can be applied to meteorology and relative field with realistic, continuum grid data.

Cite this article

HU Jiang-lin, ZHANG Ren-he, NIU Tao . A Daily Precipitation Grid Dataset with 0.1°Resolution in Changjiang River Valley and Its Precision[J]. JOURNAL OF NATURAL RESOURCES, 2008 , 23(1) : 136 -149 . DOI: 10.11849/zrzyxb.2008.01.016


[1] Daly C. Guidelines for assessing the suitability of spatial climate data sets[J]. International Journal of Climatology,2006,26:707-721. [2] Huffman G J, R F Adler, M M Morrissey, et al. Global precipitation at one-degree resolution from multisatellite observations[J]. Journal of Hydrometeorology,2001,2:36-50. [3] Adler R F, Huffman G J, Chang A, et al. The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present)[J]. Journal of Hydrometeorology, 2003,4:1147-1167. [4] Xie P, Yatagal A, Chen M, et al. A gauge-based analysis of daily precipitation over East Asia[J]. Journal of Hydrometeorology,2007,8:607-626. [5] Ebert E E, Damrath U, Wergen W, et al. The WGNE assessment of short-term quantitative precipitation forecasts[J]. Bull. Amer. Meteor. Soc.,2003,84:481-492. [6] 李庆祥,李伟.近半个世纪中国区域历史气温网格数据集的建立[J].气象学报,2007,65(2):293~300. [7] Thiessen A H. Precipitation averages for large areas[J]. Mon. Wea. Rev.,1911,39:1082-1084. [8] Dai A, Fung I Y, Del G A. Surface observed global land precipitation variations during 1900-88[J]. Journal of Climate,1997,10:2943-2962. [9] Garen D C, Johnson G L, Hanson C L. Mean areal precipitation for daily hydrologic modeling in mountainous terrain[J]. Water Resources Bulletion,1994,30:481-491. [10] Hutchinson M F. Interpolating mean rainfall using thin plate smoothing splines[J]. International Journal of Geographical Information Systems,1995,9:385-403. [11] Thornton P E, Running S W, White M A. Generating surfaces of daily meteorological variables over large regions of complex terrain[J]. Journal of Hydrology,1997,190:214-251. [12] Daly C, Neilson R P, Phillips D L. A statistical-topographic model for mapping climatological precipitation over mountainous terrain[J]. Journal of Applied Meteorology,1994,33:140-158. [13] 林忠辉,莫兴国,李宏轩,等.中国陆地区域气象要素的空间插值[J].地理学报,2002,57(1):47~56 [14] 冯锦明,赵天保,张英娟.基于台站降水资料对不同空间内插方法的比较[J].气候与环境研究,2004,9(2):261~277. [15] 辜智慧,史培军,陈晋.气象观测站点稀疏地区的降水插值方法探讨——以锡林郭勒盟为例[J].北京师范大学学报(自然科学版),2006,42(2):204~208. [16] 张升堂,康绍忠,刘音.新型降水分布数学模型研究及其应用[J].应用生态学报,2005,16(3):555~558. [17] 傅抱璞.地形和海拔高度对降水的影响[J].地理学报,1992,47(2):302~314. [18] 舒守娟,喻自凤,王元,等.西藏地区复杂地形下的降水空间分布估算模型[J].地球物理学报,2005,48(3):535~542. [19] 薛根元,周锁铨,余越辉,等.复杂地形条件下气候变量空间分布分析方案研究[J].科技导报,2004,(8):42~46. [20] 孙鹏森,刘世荣,李崇巍.基于地形和主风向效应模拟山区降水空间分布[J].生态学报,2004,24(9):1910~1916. [21] 周锁铨,薛根元,周丽峰,等.基于GIS降水空间分析的逐步插值方法[J].气象学报,2006,64(1):100~111. [22] 刘宇,陈泮勤,张稳,等.一种地面气温的空间插值方法及其误差分析[J].大气科学,2006,30(1):146~152. [23] Sinha S K, Narkhedkar S G, Mitra A K. Bares objective analysis scheme of daily rainfall over Maharashtra (India) on a mesoscale grid[J]. Atmosfera,2006,19:109-126. [24] Barnes S L. A technique for maximizing details in a numerical weather map analysis[J]. J. Appl. Meteorol.,1964,3:396-409. [25] Patricia M P, Wu X H. The Theoretical, discrete, and actual response of the Barnes objective analysis scheme for one-and two-dimensional fields[J]. Mon. Wea. Rev.,1990,118:1145-1164. [26] Barnes S L. Applications of Barnes objective analysis scheme. Part Ι: Effects of undersampling, wave position and station randomness[J]. J. Atmos. Oceanic Tech.,1994,11:1433-1448. [27] S S P Shen, P Dzikowski, G Li, et al. Interpolation of 1961-1997 daily climate data onto Alberta polygons of ecodistrict and soil landscape of Canada[J]. J. Appl. Meteo.,2001, 40:2162-2177. [28] S S P Shen, H Yin, K Cannon, et al. Temporal and spatial changes of agroclimate in Alberta during 1901-2002[J]. J. Appl. Meteo.,2005,44:1090-1105. [29] 中华人民共和国气候图编辑委员会.中华人民共和国气候图集[M].北京:气象出版社,2002.49~52. [30] 戴仕宝,杨世伦.近50年来长江水资源特征变化分析[J].自然资源学报,2006,21(4):501~506. [31] 杨宏青,陈正洪,石燕.长江流域近40年强降水的变化趋势[J].气象,2005,31(3):66~68.