
The impact of local economic growth target management on carbon emissions efficiency
SUN Hao, GUO Jin-guang
JOURNAL OF NATURAL RESOURCES ›› 2024, Vol. 39 ›› Issue (1) : 186-205.
The impact of local economic growth target management on carbon emissions efficiency
Based on panel data from 231 cities in China from 2007 to 2021, this study investigates the intrinsic mechanisms of local economic growth target management on carbon emission efficiency, as well as the heterogeneity in local government behavior. The results show that: (1) Local economic growth targets have a negative impact on carbon emission efficiency. Particularly when local governments impose strict constraints, intensify target requirements, and strive for overachievement of these targets, which will furgher exacerbate the adverse effects on carbon emission efficiency. On the other hand, the implementation of "flexible constraints" that allow some leeway can to a certain extent promote the improvement of carbon emission efficiency. (2) The strict constraints and intensified requirements of local economic growth targets hinder the upgrading of industrial structure and the advancement of technological innovation, thereby generating negative impacts on carbon emission efficiency. Conversely, flexible constraints can enhance the level of industrial structure upgrading and technological innovation, thereby promoting the improvement of local carbon emission efficiency. (3) The impact of local economic growth targets on carbon emission efficiency exhibits a singular threshold effect regarding the upgrading of industrial structure and technological innovation. Relying on strategic plans for industrial structure upgrading and technological innovation is an effective means for local economic growth targets to enhance carbon emission efficiency. (4) The increasing pressure of local GDP assessment not only weakens the promoting effect of flexible constraints on carbon emission efficiency in economic growth targets but also exacerbates the negative impact of intensified targets and competition among provinces and cities on carbon emission efficiency. However, the implementation of carbon emission trading policies and the shift in target constraint methods can effectively mitigate the negative influence of local economic growth target management on carbon emission efficiency.
economic growth target management / local government behavior / advanced industrial structure / technological innovation / carbon emission efficiency {{custom_keyword}} /
Table 1 Descriptive statistics表1 描述性统计表 |
变量 | 计算方法 | 均值 | 标准差 | 最小值 | 最大值 |
---|---|---|---|---|---|
碳排放效率(CTFP) | 非期望产出SBM超效率 | 0.554 | 0.175 | 0.239 | 2.801 |
经济增长目标(PEG) | 政府工作报告中所提到的经济增长目标值 | 0.098 | 0.029 | 0.001 | 0.250 |
软约束(RPEG) | 对经济增长目标采用“左右”“上下”“区间”等进行修饰的赋值为1,即RPEG=1,其他赋值为0,RPEG=0 | 0.341 | 0.474 | 0.000 | 1.000 |
硬约束(YPEG) | 对经济增长目标采用确保(力争、争取、突破)达到X%,或者达到X%以上进行修饰的赋值为1,即YPEG=1,其他赋值为0,YPEG=0 | 0.248 | 0.432 | 0.000 | 1.000 |
目标加码(JMPEG) | 城市与所在省份经济增长目标之差 | 0.012 | 0.016 | -0.079 | 0.140 |
超额完成情况(WCPEG) | 实际经济增长与原定目标值之差 | -0.011 | 0.024 | -0.220 | 0.078 |
经济发展水平(Economy) | 地区人均GDP并取对数表征 | 10.729 | 0.571 | 9.091 | 13.056 |
产业结构(Industry) | 第二产业增加值与地区GDP之比 | 0.467 | 0.102 | 0.117 | 0.820 |
财政自主度(Autonomy) | 财政一般预算内收入与支出之比 | 0.484 | 0.228 | 0.046 | 1.541 |
对外开放水平(Open) | 城市进出口总额与地区GDP之比 | 0.216 | 0.424 | 0.000 | 6.108 |
城市化(Urbanization) | 市辖区年末户籍人口与全市年末户籍人口之比 | 0.375 | 0.234 | 0.000 | 1.000 |
Table 2 Baseline regression result表2 基准回归结果 |
变量 | 碳排放效率(CTFP) | ||||||
---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
PEG | -0.409*** (-5.86) | ||||||
RPEG | 0.024*** (5.23) | ||||||
YPEG | -0.011** (-2.09) | ||||||
JMPEG | -0.292** (-2.29) | ||||||
WCPEG | -0.174 (-0.21) | ||||||
RPEG×WCPEG | 0.306** (2.05) | ||||||
YPEG×WCPEG | -0.217 (-0.15) | ||||||
Economy | -0.0519* (-1.87) | -0.0786** (-2.12) | -0.146*** (-2.72) | -0.152*** (-2.84) | -0.141*** (-2.64) | -0.145*** (-2.71) | -0.146*** (-2.73) |
Economy2 | 0.006** (2.06) | 0.006*** (3.19) | 0.011*** (4.26) | 0.012*** (4.46) | 0.011*** (4.30) | 0.011*** (4.27) | 0.011*** (4.27) |
Industry | -0.119** (-2.26) | -0.010 (-0.31) | -0.023 (-0.50) | -0.067 (-1.38) | -0.036 (-0.77) | -0.035 (-0.74) | -0.025 (-0.55) |
Autonomy | -0.081*** (-2.86) | -0.023** (-2.06) | -0.113*** (-3.67) | -0.122*** (-3.95) | -0.106*** (-3.44) | -0.115*** (-3.71) | -0.113*** (-3.66) |
Open | 0.019** (2.19) | 0.010* (1.66) | 0.026*** (3.03) | 0.028*** (3.21) | 0.026*** (2.97) | 0.026*** (3.04) | 0.026*** (3.04) |
Urbanization | 0.075** (2.11) | 0.019 (0.67) | 0.069* (1.69) | 0.066 (1.62) | 0.067* (1.66) | 0.068* (1.68) | 0.068* (1.68) |
常数项 | 0.522* (1.94) | 0.882*** (4.68) | 0.895*** (3.29) | 0.919*** (3.38) | 0.842*** (3.10) | 0.893*** (3.28) | 0.896*** (3.29) |
城市与时间固定 | 是 | 是 | 是 | 是 | 是 | 是 | 是 |
Hausman检验 | 80.810 [0.000] | 83.962 [0.000] | 86.327 [0.000] | 112.604 [0.000] | 86.833 [0.000] | 83.842 [0.000] | 83.465 [0.000] |
样本数/个 | 3465 | 3465 | 3465 | 3465 | 3465 | 3465 | 3465 |
注:小括号内的数值为t统计量;***、**、*分别表示在1%、5%、10%水平上显著,中括号里为对应的P值,下同。 |
Table 3 Regression results of instrumental variables表3 工具变量回归结果 |
变量 | FE模型 | IV模型 | FE模型 | IV模型 | FE模型 | IV模型 |
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
SPEG | 0.346*** (5.72) | -0.294*** (-3.41) | ||||
Quantity×GPEG | 0.304*** (3.65) | -0.125** (-2.12) | ||||
Quantity×GPEG ×WCPEG | 0.305*** (6.48) | -0.126* (-1.87) | ||||
控制变量 | 是 | 是 | 是 | 是 | 是 | 是 |
城市与时间固定 | 是 | 是 | 是 | 是 | 是 | 是 |
F值 | 86.425 [0.000] | 56.421 [0.000] | 98.163 [0.000] | |||
Hausman检验 | 42.352 [0.000] | 29.481 [0.000] | 30.892 [0.000] | |||
DWH检验 | 16.429 [0.000] | 18.926 [0.000] | 20.163 [0.000] | |||
样本数/个 | 3465 | 3465 | 3465 | 3465 | 3465 | 3465 |
注:FE模型与IV模型中小括号里分别为变量对应的t值与Z值。 |
Table 4 Robustness test表4 稳健性检验 |
变量 | 替换回归模型 | |||||
---|---|---|---|---|---|---|
差分GMM模型 | Tobit模型 | |||||
(1) | (2) | (3) | (4) | (5) | ||
YSPEG | -0.502*** (-4.88) | -0.400*** (-3.84) | -0.336** (-5.63) | 0.001** (2.45) | -0.005 (-1.05) | |
控制变量 | 是 | 是 | 是 | 是 | 是 | |
样本数/个 | 3003 | 3003 | 3003 | 3465 | 3465 | |
变量 | 缩减样本集 | |||||
YSPEG | 0.742 (1.05) | -0.163*** (-3.24) | -0.135 (-0.25) | 0.054** (2.17) | -0.062** (-2.32) | |
控制变量 | 是 | 是 | 是 | 是 | 是 | |
样本数/个 | 2955 | 2955 | 2955 | 2955 | 2955 |
注:差分GMM模型、Tobit模型与缩减样本集中小括号内的数值分别为Z统计量、Z统计量与t统计量。 |
Table 5 Heterogeneous regression results表5 异质性回归结果 |
变量 | 地域分组 | 经济发展水平分组 | |||
---|---|---|---|---|---|
东部 | 中部 | 西部 | 高组 | 低组 | |
PEG | 0.424*** (3.58) | -0.0789 (-0.51) | -0.196*** (-3.60) | 0.338** (2.23) | -0.101** (-2.44) |
RPEG | 0.034* (1.79) | 0.011 (1.28) | 0.089*** (3.31) | 0.032** (2.39) | 0.059 (1.05) |
YPEG | -0.024 (-0.42) | -0.008** (-2.09) | -0.0134* (-1.84) | -0.0374 (-0.68) | -0.0119* (-1.91) |
JMPEG | 0.683 (0.79) | 0.162* (1.75) | -0.236** (-2.43) | -0.779*** (-4.47) | 0.120 (0.48) |
WCPEG | -0.384*** (-4.27) | -0.113 (-0.90) | -0.135** (2.27) | -0.204 (-1.07) | -0.236** (-1.99) |
控制变量 | 是 | 是 | 是 | 是 | 是 |
样本数/个 | 1365 | 1425 | 675 | 1755 | 1710 |
变量 | 城市等级分组 | ||||
一线 | 二线 | 三线 | 四线 | 五线 | |
PEG | 0.371 (1.03) | 0.332 (0.71) | 0.295 (1.09) | -0.273*** (-2.98) | -0.254* (-2.04) |
RPEG | 0.045* (1.82) | 0.057*** (4.01) | 0.041*** (2.99) | 0.032 (0.54) | 0.043*** (3.17) |
YPEG | -0.011 (-0.78) | -0.012 (-024) | -0.057 (-0.77) | -0.035** (-2.78) | -0.010** (-2.24) |
JMPEG | -0.238 (-1.48) | -0.254*** (-3.43) | -0.764* (-2.49) | -0.035*** (-3.32) | -0.082* (-1.77) |
WCPEG | -0.183** (-2.44) | -0.081** (-2.45) | -0.072** (-2.43) | -0.134** (-3.45) | 0.014 (0.32) |
控制变量 | 是 | 是 | 是 | 是 | 是 |
样本数/个 | 285 | 420 | 945 | 945 | 870 |
注:小括号内的数值分别t统计量。 |
Table 6 Intrinsic mechanism test results表6 内在机制检验结果 |
变量 | (1) | (2) | (3) | (4) |
---|---|---|---|---|
产业结构高级化(UPGRAD) | ||||
YSPEG | -0.551***(-6.76) | 0.011***(2.65) | -0.002**(-2.38) | -0.325***(-2.90) |
控制变量 | 是 | 是 | 是 | 是 |
常数项 | 4.967***(9.62) | 4.836***(9.89) | 4.814***(10.75) | 4.841***(9.67) |
城市与时间固定 | 是 | 是 | 是 | 是 |
技术创新(INNOV) | ||||
YSPEG | -3.799***(-9.68) | 0.102***(4.91) | -0.070***(-3.72) | -3.671***(-6.78) |
控制变量 | 是 | 是 | 是 | 是 |
常数项 | -9.028***(-5.65) | -9.880***(-4.08) | -9.999***(-4.02) | -9.769***(-4.63) |
城市与时间固定 | 是 | 是 | 是 | 是 |
注:(1)~(4)中YSPEG分别表示地方经济增长目标管理中的经济增长目标(PEG)、软约束(RPEG)、硬约束(YPEG)、目标加码(JMPEG)。 |
Table 7 Estimated threshold values for panels under advanced industrial structure and technological innovation表7 产业结构高级化与技术创新下面板的门限值估计 |
门限变量 | H0 | H1 | F值 | P值 | 结果 | 门限值 | 置信区间(95%) |
---|---|---|---|---|---|---|---|
产业结构高级化(UPGRAD) | 0个门限 | 1个门限 | 38.010 | 0.043 | 拒绝原假设 | 6.968 | [6.936, 6.994] |
1个门限 | 2个门限 | 14.604 | 0.307 | 接受原假设 | |||
技术创新(INNOV) | 0个门限 | 1个门限 | 28.032 | 0.050 | 拒绝原假设 | 9.552 | [9.435, 9.637] |
1个门限 | 2个门限 | 14.253 | 0.240 | 接受原假设 |
Table 8 Regression results of the panel single-threshold model under technological innovation of industrial structure advanced表8 产业结构高级化技术创新下的面板单一门限模型回归结果 |
变量 | 碳排放效率(CTFP) | 变量 | 碳排放效率(CTFP) | ||||
---|---|---|---|---|---|---|---|
PEG(UPGRAD≤6.968) | 0.279 (1.34) | PEG(UPGRAD>6.968) | 0.836*** (3.29) | PEG(INNOV≤9.552) | -0.612 (-1.37) | PEG(INNOV>9.552) | 0.885*** (4.81) |
控制变量 | 是 | 控制变量 | 是 | ||||
城市与时间固定 | 是 | 城市与时间固定 | 是 | ||||
常数项 | -1.227***(-10.04) | 常数项 | -1.169***(-9.49) |
Table 9 Regression results of moderating effects of local government behavior表9 地方政府行为的调节效应回归结果 |
变量 | (1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|---|
政治激励、地方经济增长目标管理与碳排放效率 | ||||||
YSPEG | 0.004 (1.46) | 0.020** (1.98) | -0.104 (-1.29) | -0.215 (-1.53) | ||
ZZKH | -0.039*** (-4.91) | -0.203** (-2.24) | 0.031 (1.43) | -0.432*** (-5.63) | 0.123 (0.97) | |
YSPEG×ZZKH | -0.006*** (-2.74) | -0.002 (-1.52) | 0.134 (1.47) | -0.523** (-2.21) | ||
常数项 | 0.620*** (5.22) | 0.463*** (4.36) | -0.047 (-1.28) | 0.627*** (4.33) | 0.139 (0.84) | |
市场激励、地方经济增长目标管理与碳排放效率 | ||||||
YSPEG | -0.007*** (-4.72) | 0.046*** (3.85) | -0.132** (-1.99) | -0.048*** (-4.58) | ||
SCJL | 0.037*** (3.84) | 0.103** (2.12) | 0.051* (1.76) | 0.302*** (2.54) | 0.038*** (2.83) | |
YSPEG×SCJL | 0.026* (1.74) | 0.009** (2.45) | 0.481 (0.68) | 0.629 (1.34) | ||
常数项 | 0.680*** (4.54) | 0.601*** (3.41) | 0.492** (2.18) | 0.637*** (4.41) | 0.536** (2.31) | |
目标约束方式转变、地方经济增长目标管理与碳排放效率 | ||||||
YSPEG | -0.042*** (-5.03) | 0.027** (2.29) | -0.053** (-2.25) | -0.044*** (-3.02) | ||
FZFS | 0.045*** (5.27) | 0.046** (2.34) | 0.045*** (4.92) | 0.012*** (4.51) | 0.031*** (4.28) | |
YSPEG×FZFS | 0.001* (1.69) | 0.016*** (2.74) | 0.024 (1.02) | 0.003 (1.28) | ||
常数项 | 1.292*** (2.81) | 0.943** (1.99) | 0.978*** (2.87) | 1.437* (1.72) | 1.042*** (2.83) |
注:列(2)~列(6)中的YSPEG分别表示地方经济增长目标管理中的目标值(PEG)以及增长目标的软约束(RPEG)、硬约束(YPEG)以及省市目标加码(SDPEG),由于篇幅过大,控制变量的结果未列举出来。 |
[1] |
徐现祥, 刘毓芸. 经济增长目标管理. 经济研究, 2017, 52(7): 18-33.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
徐现祥, 梁剑雄. 经济增长目标的策略性调整. 经济研究, 2014, 49(1): 27-40.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
詹新宇, 刘文彬. 税收分成对经济增长目标管理的激励效应. 税务研究, 2021, (4): 128-133.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
徐现祥, 李书娟, 王贤彬, 等. 中国经济增长目标的选择: 以高质量发展终结“崩溃论”. 世界经济, 2018, 41(10): 3-25.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
张明斗, 席胜杰. 资源型城市碳排放效率评价及其政策启示. 自然资源学报, 2023, 38(1): 220-237.
基于资源型城市面临经济转型与节能减排的双重压力,本文采用三阶段超效率SBM模型,实证测度了2004—2019年中国114个资源型城市碳排放效率,并利用Dagum基尼系数、核密度估计、QAP回归分析等方法对效率差异、时空演变以及差异来源进行探讨。研究表明:(1)剔除环境因素和随机干扰后,资源型城市碳排放效率均值降至0.230,但整体呈现上升趋势。(2)碳排放效率高值区集中于再生型与成熟型城市,分布较为分散;低值区则主要为成长型与衰退型城市,并于东北、中部等地区呈现集聚性特征。(3)资源型城市碳排放效率差异较大,其中,组间差异贡献率最高,但呈现下降趋势;再生型和成熟型城市组内差异相对稳定,成长型和衰退型城市组内差异逐渐扩大。(4)人口密度、居民可支配收入和规模企业数量差异会显著扩大资源型城市碳排放效率差异,而且人口密度、人口结构以及居民可支配收入差异对不同类型资源型城市碳排放效率差异呈现显著的异质性影响。基于分析结果,本文提出三点政策启示:一是依据资源型城市类型,采取因地制宜的减排方案;二是增加低碳创新投入,促进产业绿色转型;三是推广绿色消费方式,加强居民端减排。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
徐英启, 程钰, 王晶晶, 等. 中国低碳试点城市碳排放效率时空演变与影响因素. 自然资源学报, 2022, 37(5): 1261-1276.
中国提出2030年前实现碳达峰、2060年前实现碳中和的战略目标,提高碳排放效率,推动绿色低碳发展是实现“双碳”目标的重要途径。运用包含非期望产出的Super-SBM模型,测度了2003—2018年中国68个低碳试点城市的碳排放效率并分析其时空演变特征,运用面板回归模型分析城市碳排放效率的影响因素,得出以下结论:(1)低碳试点城市碳排放效率在时间上整体呈上升趋势,效率值从0.169上升至0.423,年均增长率为6.31%,仍有一定的提升空间。(2)低碳试点城市碳排放效率的区域差异呈先缩小后逐渐扩大趋势,空间上呈现“东中西”递减分布格局;从城市等级规模来看呈现“超大城市>特大城市>大城市>中等城市>小城市”特征。(3)经济发展水平、产业结构、城镇化水平、绿色技术创新与试点城市碳排放效率呈显著正相关,外资强度与碳排放效率呈显著负相关,各影响因素对三大地区和不同规模城市的作用程度存在一定的差异性。从创新投入、产业结构和区域差异化等方面提出对策建议,对促进城市绿色低碳发展和生态文明建设具有一定的借鉴意义。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
吉雪强, 张跃松. 长江经济带种植业碳排放效率空间关联网络结构及动因. 自然资源学报, 2023, 38(3): 675-693.
基于长江经济带11省市数据,利用非期望产出SBM模型测度种植业碳排放效率,通过修改的引力模型构建空间关联网络,应用社会网络分析法剖析空间关联网络结构,利用QAP模型分析空间关联网络驱动因素。研究表明:(1)长江经济带种植业碳排放效率提升较快,效率较高,但仍有提升空间,且存在地区差距,整体呈现出复杂空间网络特征;(2)长江经济带种植业碳排放效率空间关联网络关联性增强,网络结构稳定性提升,空间关联网络由上海单极主导演变为江苏、浙江、贵州、上海多中心协同发展格局;(3)农民人均收入、交通运输水平、空间邻接关系、科技水平、政府农业重视水平对长江经济带种植业碳排放效率空间关联网络具有重要影响。提升种植业碳排放效率时应考虑空间关联网络结构及其动因影响,采取有效措施增强种植业碳排放效率空间关联。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
王康, 李志学, 周嘉. 环境规制对碳排放时空格局演变的作用路径研究: 基于东北三省地级市实证分析. 自然资源学报, 2020, 35(2): 343-357.
基于2005-2016年东北三省36个地级市面板数据,定性分析环境规制与碳排放的时空格局演变特征,并利用中介效应分析法定量研究环境规制对碳排放的影响及作用路径。结果表明:(1)从各城市对比来看,环境规制强度呈现出明显的市域差异,碳排放量呈先增加后减小态势。(2)从空间格局来看,环境规制强度呈现由北向南逐渐增强的态势,区域间差异逐渐增大。环境规制的高水平类型分布集中,城市数量最多;低水平类型均位于黑龙江省北部,城市数量最少。碳排放量的高水平类型集中分布在辽东半岛以及大庆市和吉林市等石油型、冶金型城市,低水平类型城市数量呈波动增加,主要分布在东北北部,且向南逐渐扩散。(3)东北三省严格的环境规制不仅直接抑制碳排放,也可以通过优化产业结构和精简粗放投资间接抑制碳排放,地方政府竞争则会减弱环境规制对碳排放的抑制效应。
[
Based on the data of 36 municipal panels in the three provinces of Northeast China from 2005 to 2016, the spatial and temporal patterns of environmental regulation and carbon emission are analyzed qualitatively. And we use a mediation effects to analyze the influences of environmental regulation on carbon emissions quantitatively. The results show that: (1) The comparison of cities shows that there are obvious urban differences between different cities in the intensity of environmental regulation. The carbon emissions increased first and then reduced; (2) As for the spatial pattern, the intensity of environmental regulation shows a trend of increasing from north to south, and the differences between regions increased gradually. The high-level types of environmental regulation are centrally distributed, and most in cities. The low-level types of environmental regulation are found in the northern part of Heilongjiang Province, and the number of the low-level types is the smallest in cities. The high-level types of carbon emissions are concentrated in regions which are rich in oil and metal resources, such as Liaodong Peninsula and the cities of Daqing and Jilin. And the number of low-level cities has increased, mainly in the northeastern part of the region; (3) The strict environmental regulation in the three provinces of Northeast China not only directly restrains carbon emissions, but also indirectly restrains carbon emissions by optimizing industrial structure and reducing rough investment. Meanwhile, the competition between local governments would reduce carbon emissions of the environmental regulation.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
郭沛, 梁栋. 低碳试点政策是否提高了城市碳排放效率: 基于低碳试点城市的准自然实验研究. 自然资源学报, 2022, 37(7): 1876-1892.
作为推动我国低碳经济发展的重要政策,低碳试点城市建设成效在当今我国面临碳减排及经济下行双重压力的情况下显得尤为重要。基于2006—2018年间的279个地级市样本数据,运用超效率SBM模型核算了城市碳排放效率,并通过双重差分模型实证检验了低碳试点政策对城市碳排放效率的影响。研究表明:低碳试点政策能够显著提高城市碳排放效率,这一结论在经过PSM-DID等一系列稳健性检验后仍然成立。异质性分析发现,低碳试点政策对碳排放效率的影响在东西部及非资源型地区更显著。机制分析则表明,低碳试点政策的政策效应主要通过提高城市技术创新水平和调整城市能源结构来发挥作用。区分东中西地区的作用机制检验结果表明,东部地区的试点政策主要通过调整能源结构及产业结构合理化来影响碳排放效率,西部地区和中部地区则分别主要通过技术创新和产业结构合理化发挥作用。本文为加强低碳试点城市建设、实现碳减排与经济发展双赢提供了有益的经验启示。
[
As an important policy to promote the development of low-carbon economy in China, the construction of low-carbon pilot cities is particularly important under the dual pressure of carbon emission reduction and economic downturn. Based on the panel data of prefecture-level cities from 2006 to 2018, this paper calculates the urban carbon emission efficiency by using the super-efficiency SBM model, and empirically tests the impact of low-carbon pilot policies on the urban carbon emission efficiency through the difference in difference model. Results show that low-carbon pilot policies can significantly improve urban carbon emission efficiency, which is still true after a series of robustness tests such as PSM-DID. Further research shows that the impact of pilot policies on carbon emission efficiency is heterogeneous, and the policy effect is more significant in the eastern and western regions and non-resource-based regions. The mechanism analysis shows that low-carbon pilot policies can help improve urban carbon emission efficiency by enhancing urban innovation level and adjusting energy structure. The pilot policies in the eastern region play a role mainly through the adjustment of energy structure and the rationalization of industrial structure, while those in the central and western regions affect carbon emission efficiency mainly through technological innovation and the rationalization of industrial structure, respectively. This research provides useful experience and inspiration for strengthening the construction of low-carbon pilot cities and realizing the win-win situation of carbon emission reduction and economic development. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
余泳泽, 刘大勇, 龚宇. 过犹不及事缓则圆: 地方经济增长目标约束与全要素生产率. 管理世界, 2019, 35(7): 26-42, 202.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
任晓怡, 叶显, 吴非. 地方经济增长目标、政府行为与企业全要素生产率. 公共管理与政策评论, 2021, 10(4): 127-146.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
Economic growth target management is a government behavior that the authorities formulate at a specific time and direct the allocation of resources. Despite the importance of socio-economic development, economic growth targets have caused some potential hazards to the environment that cannot be ignored. Using a panel dataset of 278 prefecture-level cities in China over the period 2004-2019, the study employed a two-way fixed effects model to verify the inhibition effect of economic growth targets on green technology innovation (GTI). The results indicated that economic growth targets and hard constraints tended to have a significantly negative effect on GTI. More importantly, the results of the mediation effect test suggested a positive correlation between economic growth targets and the government fiscal expenditures and market segmentation, and both mediators played an intermediary role in the influence of economic growth target constraints restraining GTI. Other findings showed that the economic growth targets of prefecture-level cities had different impacts on GTI, which resulted from the different resource endowments, geographic locations, or periods. Overall, the results suggest that policymakers should lower the economic growth targets and use soft constraints to set them. The conclusions of this paper are applicable to policymakers not only in China but also other economies that regularly set economic growth targets.© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
吕贤杰, 陶锋. 地方经济增长目标约束促进了企业实质性创新吗?. 现代经济探讨, 2021, (8): 64-71, 84.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
郭晓辉. 经济增长目标、地方政府行为与环境效应的关系. 城市问题, 2020, (9): 60-70.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
周瑞辉, 杨新梅. 经济增长目标压力与城市绿色发展. 城市问题, 2021, (1): 63-72.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
谭海波, 郑清清, 王海函. 地方政府大数据产业政策:工具偏好及其匹配: 基于贵州省政策文本的分析. 中国行政管理, 2021, (1): 52-58.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
龚锋, 陈子昂. 增长目标“加码”会抑制地方长期经济增长吗?. 经济科学, 2022, (3): 20-34.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
李茫茫, 王红建, 严楷. 经济增长目标压力与企业研发创新的挤出效应: 基于多重考核目标的实证研究. 南开管理评论, 2021, 24(1): 17-26, 31-32.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
邓博夫, 王泰玮, 吉利. 地区经济增长压力下的政府环境规制与企业环保投资:政府双重目标协调视角. 财务研究, 2021, (3): 70-81.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
刘志华, 徐军委, 张彩虹. 科技创新、产业结构升级与碳排放效率:基于省际面板数据的PVAR分析. 自然资源学报, 2022, 37(2): 508-520.
基于PVAR模型,以我国30个省(市、自治区)2010—2018年数据为例,从全国和东中西区域层面分析科技创新、产业结构升级与碳排放效率的动态关系。结果表明:(1)从全国层面看,科技创新、产业结构升级与碳排放效率自身具有较强的协调性且相互间能够产生正向的促进作用。(2)从区域内部来看,自东向西,科技创新、产业结构升级与碳排放效率的协调程度逐步递减。东部地区基本实现了三个变量的协调发展,中部地区产业结构升级与碳排放效率尚未形成双向互动关系,碳排放效率对产业结构升级提升的推动力不足;西部地区科技创新水平偏低,产业结构不合理、碳排放效率较低,三者均未形成良性互动。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
王旦, 王业斌. 地方经济增长目标与产业结构升级: 基于2004—2016年中国260个地级市的经验证据. 商业研究, 2021, (4): 48-58.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
陆铭, 欧海军. 高增长与低就业: 政府干预与就业弹性的经验研究. 世界经济, 2011, (12): 3-31.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
郭丰, 杨上广, 任毅. 数字经济、绿色技术创新与碳排放: 来自中国城市层面的经验证据. 陕西师范大学学报: 哲学社会科学版, 2022, 51(3): 45-60.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
Global warming has recently become a significant concern for world leaders. Financial efficiency, environmental regulations, and green technologies are widely recognized as important contributors to a clean environment. Consequently, the primary motive of this study is to investigate the impact of financial efficiency, environmental regulations, and green technologies on CO2 emissions and energy efficiency in top polluted economies over the period 1995 to 2020. To that end, the study relies on the ARDL-PMG model, which can provide both short- and long-run estimates simultaneously. The findings of the model imply that environmental innovation and regulations helps improve energy efficiency and environmental quality in the long run. In contrast, financial development deteriorates the environmental quality and improves energy efficiency. Therefore, policy experts in top polluted economies must increase research and development activities to promote green technologies and introduce strict environmental-related regulations to complement other mitigating policies.© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
冯粲, 孙晖. 房价水平对企业创新研发支出的影响机制. 财经理论与实践, 2021, 42(2): 57-66.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
傅利平, 李永辉. 地方政府官员晋升竞争、个人特征与区域产业结构升级: 基于我国地级市面板数据的实证分析. 经济体制改革, 2014, (3): 58-62.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
孙浩, 郭劲光. 环境规制和产业集聚对能源效率的影响与作用机制: 基于空间效应的视角. 自然资源学报, 2022, 37(12): 3234-3251.
在中国向高质量发展转型下,探究环境规制、产业集聚对能源效率的作用,对实现“双碳目标”具有重要的现实意义。系统梳理了三者间的作用机制,并基于中国2006—2018年的数据,运用多种“近邻”权重下的空间杜宾模型,检验环境规制、产业集聚以及二者的融合发展对能源效率的溢出效应及其区域差异。研究发现:(1)环境规制和能源效率二者间存在“波特假说”,但这种效应却具有“度”的限制;产业集聚(专业化、多样化)能够有效地助推自身以及与之“相邻”(地理邻近、经济互动)地区能源效率的提升。(2)环境规制对能源效率的作用表现出明显的区域差异,且在中国东、中以及西部三区域间也具有显著的经济地理关联性;产业集聚对能源效率的影响也表现出明显的区域差异,东部来源于多样化集聚,而中西部来源于专业化与多样化集聚。(3)在效应分解方面,无论是全样本还是分区域样本中,环境规制、产业集聚对能源效率的空间溢出效应并不单单是由于地理“相邻”造成的,更多是地区间地理邻近与经济互动协同的结果。(4)环境规制与专业化集聚的融合发展,抑制了专业化带来的正效应,而其与多样化集聚的融合发展对推动能源效率提升具有更强效果。
[
In the transition to high-quality development in China, it is important to investigate the effect of environmental regulation and industrial agglomeration on energy efficiency to achieve energy conservation and emission reduction. Based on the data from 2006 to 2018, the spatial Durbin model with various "near-neighbor" weights is applied to examine the spillover effects of environmental regulation, industrial agglomeration and their integration on energy efficiency and their regional differences. The study finds that there is a "Porter's hypothesis" between environmental regulation and energy efficiency, but this effect is limited by "degree". Industrial agglomeration (specialization and diversification) can effectively contribute to itself and its own effect of environmental regulation on energy efficiency. The role of environmental regulation on energy efficiency shows significant regional differences, and there is also a significant economic-geographic correlation between the eastern, central and western regions of China. The impact of industrial agglomeration on energy efficiency also shows obvious regional differences, with the eastern part from diversified agglomeration, and the central and western parts from specialized and diversified agglomeration. In terms of effect decomposition, the spatial spillover effects of environmental regulation and industrial agglomeration on energy efficiency are not solely due to geographical "proximity", but are more the result of geographical proximity and economic interaction between regions. The integration of environmental regulation and specialized agglomeration suppresses the positive effect of specialization, while its integration with diversified agglomeration has a stronger effect on promoting energy efficiency. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
丛建辉, 刘学敏, 赵雪如. 城市碳排放核算的边界界定及其测度方法. 中国人口·资源与环境, 2014, 24(4): 19-26.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
China initiated a major reform for capital taxation in 2004. Completed in 2009, it introduced permanent tax incentives for firms’ investment in fixed assets. We explore a unique firm-level dataset from years 2005–2012 and utilize a quasi-experimental design to test the impacts of the reform on firms’ investment and productivity. We find that, on average, the reform raised investment and productivity of the treated firms relative to the control firms by 38.4 percent and 8.9 percent, respectively. We also show that the positive effects tend to be strengthened for firms with financial constraints. (JEL D24, D25, G31, H25, O25, P31, P35)
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
江艇. 因果推断经验研究中的中介效应与调节效应. 中国工业经济, 2022, (5): 100-120.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
郭劲光, 孙浩. 产业结构升级与地区性别就业差距: 基于全要素生产率的中介检验. 山西财经大学学报, 2022, 44(5): 70-81.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
聂莹, 刘清杰, 孙素芬. 经济全球化能够有效抑制“一带一路”沿线国家的生态足迹吗: 来自动态门槛面板模型的经验证据. 自然资源学报, 2019, 34(2): 301-311.
基于1993-2013年“一带一路”沿线55个国家的平行面板数据,运用Hansen动态面板门槛模型,以经济发展水平(人均GDP)为门槛变量,检验经济全球化与生态足迹之间的关系。研究结果表明:在不同的经济门槛范围内,经济全球化对生态足迹存在不同的影响。当经济发展水平小于等于3905美元时,经济全球化水平的提高能够显著降低生态足迹;当经济发展水平超过第一门槛值3905美元时,经济全球化水平对生态足迹的影响从显著抑制转变为促进作用,但是不显著;而当经济发展水平跨越第二门槛值8778美元时,经济全球化水平的提高能够显著刺激生态足迹的提高。当前“一带一路”沿线国家主要集中在第一门槛区间和第三门槛区间,经济全球化对生态足迹的影响出现两极分化态势,其中在第三门槛区间的国家在参与全球化的过程中应对资源的可持续利用引起充分重视,这关系到全球化的可持续发展和“一带一路”建设的顺利推进。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
吕冰洋, 陈怡心. 财政激励制与晋升锦标赛: 增长动力的制度之辩. 财贸经济, 2022, 43(6): 25-47.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |