
On spatial relationship between environmental regulation, high-quality economic development and the utilization of ecological capital: Taking the Beibu Gulf Economic Zone as an example
CHEN Zhi-gang, YAO Juan
JOURNAL OF NATURAL RESOURCES ›› 2022, Vol. 37 ›› Issue (2) : 277-290.
On spatial relationship between environmental regulation, high-quality economic development and the utilization of ecological capital: Taking the Beibu Gulf Economic Zone as an example
How to utilize ecological capital utilization can have influence on the sustainable development. Taking the panel data from the Beibu Gulf Economic Zone covering 2006-2019 as an example in this article, we build an SDM model to examine the spatial relationship between environmental regulation, high-quality economic development and ecological capital. Some conclusions can be drawn as follows. (1) Environmental regulation, high-quality economic development and ecological capital utilization constitutes a system, also known as a "3E" system. (2) There is a significant spatial positive autocorrelation of the utilization of ecological capital. (3) Environmental regulation has a significant positive correlation with the supply and demand of ecological capital, flow utilization and stock occupancy. Environmental regulation inhibits the stock occupancy as well as capital supply and demand and flow utilization levels. High-quality economic development significantly increases capital demand, supply and flow utilization, as well as stock occupancy. (4) The interaction between environmental regulation and high-quality economic development promotes the change of capital supply and demand and flow utilization, and restrains the change trend of stock occupation. The conclusion is of a practical significance for us to have a better understanding of rational utilization of ecological resources.
environmental regulation / high-quality economic development / ecological capital / spatial econometrics / Beibu Gulf Economic Zone {{custom_keyword}} /
Table 1 Index system and descriptive statistics of variables表1 指标体系及变量描述性统计 |
评价指标及权重 | 指标测算或来源 | 极小值 | 极大值 | 均值 | 标准差 | |||
---|---|---|---|---|---|---|---|---|
环境规制指标Q | 工业废水0.1958 | 数据来自历年《中国城市统计年鉴》《中国城乡统计年鉴》 | 476.00 | 15731.00 | 3859.28 | 3068.70 | ||
工业废气0.4934 | 92.00 | 73567.00 | 20477.57 | 17618.80 | ||||
工业粉(烟)尘0.3108 | 71.00 | 49787.00 | 12875.57 | 10302.08 | ||||
经济高质量发展 | 效益0.4933 | 全要素生产率0.4933 | DEA—Malmquist | 0.12 | 21.63 | 2.07 | 3.02 | |
创新0.1958 | 创新规模0.1958 | R&D支出累计存量 | 15.00 | 808.87 | 149.13 | 134.93 | ||
民生水平0.3108 | 城镇居民人均收入0.1554 | 数据来自 相关地市统计年鉴 | 3290.00 | 18482.00 | 9191.90 | 3956.03 | ||
农村居民人均收入0.1554 | 476.00 | 15731.00 | 3859.28 | 3068.70 | ||||
被解释变量 | 人均生态足迹ef | 由三维生态足迹模型核算 | 0.32 | 3.39 | 0.9810 | 0.62027 | ||
人均生态承载力bc | 0.09 | 3.09 | 0.7876 | 0.5655 | ||||
生态资本存量占用efd | 1.00 | 2.41 | 1.11 | 0.31 | ||||
生态资本流量利用efs | 0.08 | 2.97 | 0.62 | 0.50 | ||||
解释变量 | 经济高质量发展水平HQED | 自创指标体系 | 0.11 | 0.43 | 0.23 | 0.07 | ||
环境规制强度Q | 自创指标体系 | 554.93 | 131169.7 | 39396.95 | 28302.44 | |||
控制变量 | 人均GDP | 数据来自 相关地市历 年统计年鉴 | 8062.31 | 27806.99 | 14889.62 | 4313.36 | ||
物质资本pe | 294.23 | 15586225 | 1001062.24 | 3149990.44 | ||||
人力资本he | 112636 | 2341007 | 659892.9 | 504528.9 |
注:样本量N=130。 |
Table 2 The global spatial correlation calculation results of bc表2 bc的全局空间相关性计算结果 |
年份 | Geary's c | 年份 | Geary's c | 年份 | Geary's c | 年份 | Geary's c |
---|---|---|---|---|---|---|---|
2006 | 0.335* | 2010 | 0.245** | 2014 | 0.197** | 2018 | 0.269* |
2007 | 0.190** | 2011 | 0.174** | 2015 | 0.451 | 2019 | 0.457 |
2008 | 0.316* | 2012 | 0.194** | 2016 | 0.269* | ||
2009 | 0.250** | 2013 | 0.186** | 2017 | 0.254* |
注:**、*分别表示P<5%、P<10%的显著性水平,下同。 |
Table 3 The global spatial correlation calculation results of ef表3 ef的全局空间相关性计算结果 |
年份 | Geary's c | 年份 | Geary's c | 年份 | Geary's c | 年份 | Geary's c |
---|---|---|---|---|---|---|---|
2006 | 0.530 | 2010 | 0.386* | 2014 | 0.345* | 2018 | 0.587 |
2007 | 0.588 | 2011 | 0.375* | 2015 | 0.287* | 2019 | 0.520 |
2008 | 0.630 | 2012 | 0.375* | 2016 | 0.246* | ||
2009 | 0.526 | 2013 | 0.371* | 2017 | 0.293* |
Table 4 The global spatial correlation calculation results of efs表4 efs的全局空间相关性计算结果 |
年份 | Geary's c | 年份 | Geary's c | 年份 | Geary's c | 年份 | Geary's c |
---|---|---|---|---|---|---|---|
2006 | 0.379** | 2010 | 0.571 | 2014 | 0.265** | 2018 | 0.272* |
2007 | 0.293** | 2011 | 1.188 | 2015 | 0.403* | 2019 | 0.239* |
2008 | 0.310** | 2012 | 0.336** | 2016 | 0.241* | ||
2009 | 0.351** | 2013 | 0.293** | 2017 | 0.298 |
Table 5 The Moran's I and Geary's c of efd表5 efd的 Moran's I和Geary's c值 |
年份 | Moran's I | Geary's c | 年份 | Moran's I | Geary's c | 年份 | Moran's I | Geary's c |
---|---|---|---|---|---|---|---|---|
2006 | 0.11* | 0.07* | 2011 | 0.112* | 0.001* | 2016 | 0.112* | 0.001* |
2007 | 0.109* | 0.07* | 2012 | 0.112* | 0.001* | 2017 | 0.112* | 0.008* |
2008 | 0.106 | 0.013* | 2013 | 0.112* | 0.002* | 2018 | 0.111* | 0.000* |
2009 | 0.11* | 0.009* | 2014 | 0.112* | 0.001* | 2019 | 0.111* | 0.000* |
2010 | 0.111* | 0.007* | 2015 | 0.112* | 0.002* |
Table 6 Regression results of random effects model表6 空间杜宾随机效应模型的回归结果 |
模型 | 环境规制Q | 经济高质量发展HQED | 交互项Q×HQED | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
模型1 | 模型2 | 模型3 | 模型4 | 模型5 | 模型6 | 模型7 | 模型8 | 模型9 | 模型10 | 模型11 | 模型12 | |||
因变量 | lnef | lnbc | lnefs | lnefd | lnef | lnbc | lnefs | lnefd | lnef | lnbc | lnefs | lnefd | ||
截距 | — | -2.3*** | -2.6*** | 0.099 | -0.20 | -0.17 | -0.33 | 0.186 | -0.21 | -0.3 | -0.44 | 0.13 | ||
lnQ | 0.18** | 0.19** | 0.2* | 0.10*** | ||||||||||
lnHQED | 0.2** | 0.18** | 0.19** | 0.004* | ||||||||||
lnQHQED | 0.13** | 0.12* | 0.1* | 0.07*** | ||||||||||
lnhe | -0.007 | |||||||||||||
lnpe | -8e-6 | |||||||||||||
lngdppc | 0.0197 | |||||||||||||
gdppc | 0.00*** | 0.00*** | 0.00*** | |||||||||||
Wx-lnQ | -0.07* | 0.001 | ||||||||||||
Wx-QHQED | 0.05*** | -0.1*** | -0.1*** | |||||||||||
Spatial-rho | 0.15*** | 0.15*** | 0.14*** | 0.069 | 0.19*** | 0.2*** | 0.2*** | 0.0737 | 0.20*** | 0.2*** | 0.20*** | 0.08 | ||
Lgt_theta | — | -1.8*** | -1.6*** | -3.4*** | -1.6*** | -2.0*** | -2*** | -3*** | -1.4*** | -1.7*** | -1.5*** | -3*** | ||
Sigm2_e | 0.1** | 0.09** | 0.11** | 0.001 | 0.11** | 0.1** | 0.13** | 0.00076 | 0.10** | 0.1** | 0.13** | 0.00 | ||
Direct | 0.18** | 0.17** | 0.19* | 0.01*** | 0.2** | 0.18** | 0.18** | 0.004* | 0.117 | 0.103 | 0.11 | 0.01*** | ||
Indirec | -0.088 | -0.11 | -0.104 | 0.005 | -0.02 | 0.02 | -0.02 | 0.0027 | -0.07 | -0.11 | -0.13 | 0.014 | ||
Total | 0.088 | 0.059 | 0.088 | 0.01* | 0.17 | 0.20 | 0.17 | 0.0069 | 0.047 | -0.01 | -0.20 | 0.02* | ||
hausman | 37.6*** | -4.06 | -7.01 | -0.52 | -1.61 | -0.74 | -1.51 | -4.7 | 1.10 | -8.9 | -48.7 | -0.63 | ||
模型选择 | 固定 效应 | 随机 效应 | 随机 效应 | 随机 效应 | 随机 效应 | 随机 效应 | 随机 效应 | 随机 效应 | 随机 效应 | 随机 效应 | 随机 效应 | 随机 效应 |
注:***表示P<1%的显著性水平。 |
[1] |
何利, 沈镭, 陶建格 , 等. 基于复式记账的自然资源资产负债表平衡关系研究. 自然资源学报, 2018,33(10):1697-1705.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
袁丽静, 郑晓凡 . 环境规制、政府补贴对企业技术创新的耦合影响. 资源科学, 2017,39(5):911-923.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
谢婷婷, 郭艳芳 . 环境规制、技术创新与产业结构升级. 工业技术经济, 2016, ( 9):135-145.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
伍格致, 游达明 . 环境规制对技术创新与绿色全要素生产率的影响机制: 基于财政分权的调节作用. 管理工程学报, 2019, ( 1):37-50.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
高志刚, 克甝 . 中国沿边省区经济高质量发展水平比较研究. 经济纵横, 2020, ( 2):23-35.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
任保平 . 经济增长质量的内涵、特征及其度量. 黑龙江社会科学, 2012, ( 3):50-53.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
赵昌文 . 推动我国经济实现高质量发展. 学习时报, 2017, (12): 1-3.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
师博, 任保平 . 中国省际经济高质量发展潜力测度及分析. 经济问题研究, 2018, ( 4):1-6.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
张同斌 . 提高环境规制强度能否“利当前”并“惠长远”. 财贸经济, 2017,38(3):116-130.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
方恺, 吴次芳, 董亮 . 城市化进程中的土地生态资本利用动态分析. 自然资源学报, 2018,33(1):1-13.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
方恺 . 自然资本核算的生态足迹三维模型研究进展. 地理科学进展, 2012,31(12):1700-1707.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
方恺, 李焕承 . 基于生态足迹深度和广度的中国自然资本利用省际格局. 自然资源学报, 2012,27(12):1995-2005.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
谢鸿宇 . 足迹评价模型的改进与应用. 北京: 化学工业出生版社, 2008.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
师博, 何璐, 张文明 . 黄河流域城市经济高质量发展的动态演进及趋势预测. 经济问题, 2021, ( 1):1-8.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
叶阿忠, 吴继贵, 陈生明 , 等. 空间计量经济学. 厦门: 厦门大学出版社, 2015: 1.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
范冰雄, 税伟, 杨海峰 , 等. 闽三角城市群自然资本损失评估. 自然资源学报, 2019,34(1):153-167.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
王雅竹, 段学军, 王磊 , 等. 长江经济带经济发展的时空分异及驱动机理研究. 长江流域资源与环境, 2020,29(1):1-12.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
陈强 . 高级计量经济学及Stata应用(第二版). 北京: 高等教育出版社, 2014: 579.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
马维兢, 刘斌, 杨德伟 , 等. 基于三维生态足迹模型的流域自然资本动态评估: 以福建省九龙江流域为例. 资源科学, 2017,39(5):871-880.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
国家发展改革委, 住房城市建设部. 北部湾城市群发展规划.http://www.gov.cn/xinwen/2017-02-16/content_5168454.htm.
[ The National Development and Reform Commission of housing urban development. Beibu gulf urban agglomeration development plan.http://www.gov.cn/xinwen/2017-02-16/content_5168454.htm.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
李永盛, 张祥建, 赵晓雷 . 中国环境信息公开的时空演化特征及其影响因素. 中国人口·资源与环境, 2020,30(3):106-114.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |