
Variation of grain sizes for surface sediments of Fozhang dune in Yarlung Zangbo River Valley
PAN Mei-hui, YANG An-na, WU Yong-qiu, MA Jian-jun, XUE Wen-xuan
JOURNAL OF NATURAL RESOURCES ›› 2020, Vol. 35 ›› Issue (12) : 3076-3088.
Variation of grain sizes for surface sediments of Fozhang dune in Yarlung Zangbo River Valley
Mountain rivers are generally featured by deep-cut river valley and steep side slopes, which is prone to landslide-dammed lake and outburst floods. Taking 2018.10.10 Baige landslide-dammed lake in Jinsha river as an example, wind reworked the outburst flood sediments and developed a plenty of sand dunes at the bank of Jinsha river. This studies about aeolian dunes in the Yarlung Zangbo River, to some extent, could provide some implication for the sedimentary distinction of aeolian sand and original flood deposit, and has some significance for engineering control of aeolian dune in this region. In this paper, a slope climbing dune in the floodplain of the middle and lower reaches of Yarlung Zangbo River, we analyzed the grain size characteristics and and spatial differentiation of surface sediments on four overlapping crescent-shaped dunes of a climbing dune, named Fozhang dune in the lower Yarlung Zangbo. The results of particle size analysis show that frequency distribution curves of the surface sediment of Fozhang dune, dominated by poorly sorted medium sand, is extremely positive biased and narrowly peaked. In the case of four individual superimposed crescent-shaped dune, the coarsest and best sorted particle fraction emerges at the top of the slope. On the whole, the surface sediment of Fozhang dune has become finer and better sorted towards the crest, which results from the combined sorting of wind and gravity. The grain size characteristics of Fozhang dune is comparable to other aeolian dunes of similar genesis. However, Sahu criterion indicates that the Fozhang dune is fluvial-originated. Maybe Sahu criterion cannot identify aeolian sand of very proximal material source from river floodplain. The comparison of grain size characteristics of sand samples with those of floodplain suggests that Fozhang dune is mainly provided with sand source by materials carried by rivers.
Yarlung Zangbo River / Fozhang dune / surface sediment / grain size characteristics {{custom_keyword}} /
Table 1 Size classification principle (mm)表1 粒度分级原则 |
粒级 | 粘土 | 粉砂 | 极细砂 | 细砂 | 中砂 | 粗砂 |
---|---|---|---|---|---|---|
粒径 | < 0.004 | 0.004~0.063 | 0.063~0.125 | 0.125~0.25 | 0.25~0.5 | > 0.5 |
采样点 | 粒级级配/mm | ||||||
---|---|---|---|---|---|---|---|
黏土 (<0.004) | 粉砂 (0.004~0.063) | 极细砂 (0.063~0.125) | 细砂 (0.125~0.25) | 中砂 (0.25~0.5) | 粗砂 (0.5~2) | ||
河漫滩(n=3) | 0.64 | 9.89 | 9.36 | 24.66 | 37.06 | 18.39 | |
佛掌沙丘 (n=30) | XYSQ1 | 0.87 | 7.87 | 2.65 | 25.47 | 47.18 | 15.95 |
XYSQ2 | 1.10 | 8.67 | 3.50 | 14.47 | 42.36 | 29.90 | |
XYSQ3 | 1.06 | 8.74 | 2.72 | 22.24 | 48.34 | 16.91 | |
XYSQ4 | 1.00 | 7.15 | 2.99 | 41.27 | 45.05 | 2.54 | |
平均值 | 1.01 | 8.15 | 2.95 | 25.62 | 45.91 | 16.36 | |
岗派公路(n=4) | 1.48 | 7.62 | 5.15 | 44.27 | 39.99 | 1.49 |
注:n为采样个数,下同。 |
Table 3 The surface sediment grain-size distribution |
采样位置 | 平均粒径Mz/Φ | 标准偏差σ | 偏度Sk | 峰度KG | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 最大值 | 最小值 | 平均值 | 最大值 | 最小值 | 平均值 | 最大值 | 最小值 | 平均值 | 最大值 | 最小值 | |||||
河漫滩(n=3) | 2.03 | 2.13 | 1.89 | 1.34 | 1.39 | 1.28 | 0.33 | 0.35 | 0.31 | 1.32 | 1.34 | 1.28 | ||||
佛掌 沙丘 (n=30) | XYSQ1 | 1.79 | 2.05 | 1.48 | 1.14 | 1.35 | 0.97 | 0.35 | 0.44 | 0.31 | 1.92 | 2.02 | 1.75 | |||
XYSQ2 | 1.60 | 1.98 | 1.08 | 1.31 | 1.69 | 1.02 | 0.40 | 0.48 | 0.31 | 1.85 | 2.19 | 1.34 | ||||
XYSQ3 | 1.76 | 2.09 | 1.54 | 1.20 | 1.28 | 1.12 | 0.40 | 0.42 | 0.37 | 2.13 | 2.67 | 1.92 | ||||
XYSQ4 | 2.08 | 2.19 | 1.95 | 1.00 | 1.09 | 0.92 | 0.35 | 0.37 | 0.31 | 2.16 | 2.49 | 1.89 | ||||
平均值 | 1.81 | 2.08 | 1.51 | 1.16 | 1.35 | 1.01 | 0.37 | 0.43 | 0.33 | 2.01 | 2.34 | 1.73 | ||||
岗派公路(n=4) | 2.20 | 2.33 | 1.95 | 1.06 | 1.20 | 0.87 | 0.36 | 0.39 | 0.31 | 2.17 | 2.31 | 2.02 |
Fig. 4 Frequency distribution curve and probability accumulation curve图4 频率分布曲线图与概率累计曲线 注:a、d分别为新月形沙丘的频率曲线和概率曲线;b、e分别为佛掌沙丘、河漫滩和岗派公路的频率曲线与概率曲线;c、f分别为新月形沙丘六个部位平均值的频率曲线与概率曲线。 |
Table 4 Sedimentary environment表4 沉积环境结果表 |
样品名 | Y1 | Y 2 | Y 3 | Y4 | 沉积环境 | 样品名 | Y1 | Y 2 | Y 3 | Y4 | 沉积环境 |
---|---|---|---|---|---|---|---|---|---|---|---|
S1 | 2.824674 | 131.2301 | -9.24219 | 13.37072 | 河流沉积 | S20 | 3.659976 | 172.4304 | -14.4706 | 13.64723 | 河流沉积 |
S2 | 2.071131 | 136.5549 | -10.1546 | 12.27891 | 河流沉积 | S21 | 6.06424 | 165.5133 | -12.3228 | 17.53943 | 河流沉积 |
S3 | 3.303797 | 159.4643 | -12.7166 | 13.58776 | 河流沉积 | S22 | 4.153659 | 178.0651 | -14.3914 | 14.86125 | 河流沉积 |
S4 | 4.459592 | 172.9453 | -14.8903 | 13.22971 | 河流沉积 | S23 | 3.115749 | 164.0291 | -12.5777 | 14.55346 | 河流沉积 |
S5 | 4.694816 | 164.6117 | -14.135 | 13.03626 | 河流沉积 | S24 | 2.821948 | 158.5968 | -11.5376 | 15.03225 | 河流沉积 |
S6 | 1.745887 | 138.5882 | -9.48731 | 13.50912 | 河流沉积 | S25 | 1.156906 | 137.4885 | -9.00259 | 13.89613 | 河流沉积 |
S7 | 6.847499 | 188.6318 | -17.6398 | 13.99275 | 河流沉积 | S26 | 1.964407 | 149.4952 | -10.3365 | 14.51887 | 河流沉积 |
S8 | 5.326945 | 162.0224 | -13.6802 | 13.76779 | 河流沉积 | S27 | 0.913255 | 128.236 | -8.16754 | 13.24203 | 河流沉积 |
S9 | 7.246369 | 245.6958 | -24.755 | 12.78646 | 河流沉积 | S28 | 3.714843 | 150.6511 | -10.0465 | 16.67934 | 河流沉积 |
S10 | 6.02602 | 178.153 | -16.1561 | 13.32911 | 河流沉积 | S29 | 2.799259 | 146.1341 | -9.54228 | 15.95078 | 河流沉积 |
S11 | 6.947143 | 250.8451 | -26.7194 | 10.52672 | 河流沉积 | S30 | 2.947681 | 145.9214 | -10.2829 | 14.68935 | 河流沉积 |
S12 | 5.825869 | 182.7372 | -16.6179 | 14.01623 | 河流沉积 | G1 | 1.451956 | 122.7787 | -7.42181 | 13.86768 | 河流沉积 |
S13 | 6.072063 | 132.6148 | -10.4865 | 14.32165 | 河流沉积 | G2 | 2.850887 | 170.7301 | -12.3832 | 15.98475 | 河流沉积 |
S14 | 3.179821 | 130.97 | -10.4616 | 11.55524 | 河流沉积 | G3 | 2.091708 | 156.3564 | -10.7191 | 15.42191 | 河流沉积 |
S15 | 6.023858 | 177.4651 | -15.6189 | 14.47563 | 河流沉积 | G4 | 3.185725 | 176.1426 | -13.8333 | 14.85862 | 河流沉积 |
S16 | 4.665626 | 153.9757 | -12.9173 | 13.28976 | 河流沉积 | H1 | 2.603355 | 165.7395 | -15.1476 | 9.557715 | 浊流沉积 |
S17 | 5.62738 | 171.8929 | -15.2918 | 13.66525 | 河流沉积 | H2 | 2.681887 | 179.1314 | -16.4449 | 10.06139 | 河流沉积 |
S18 | 5.613249 | 176.6321 | -15.9059 | 13.68584 | 河流沉积 | H3 | 2.983632 | 191.8333 | -18.0249 | 10.20717 | 河流沉积 |
S19 | 5.07212 | 165.5152 | -12.8915 | 15.79156 | 河流沉积 |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
陈渭南, 雷加强. 塔克拉玛干沙漠新月形沙丘不同部位的粒度特征. 干旱区资源与环境, 1992, (2):101-108.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
杨东亮, 王雪芹, 胡永锋, 等. 风沙流输沙通量垂向分布研究: 以塔克拉玛干沙漠南缘流沙地表风沙流观测为例. 中国沙漠, 2012,32(3):631-639.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
哈斯, 董光荣, 王贵勇, 等. 腾格里沙漠东南缘沙丘表面气流与坡面形态的关系. 中国沙漠, 1999,19(1):1-5.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
哈斯, 王贵勇, 董光荣. 腾格里沙漠东南缘格状沙丘表面气流及其地貌学意义. 中国沙漠, 2000,20(1):30-34.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
俞胜清, 阿布都米基提, 周向玲. 等. 新疆喀拉库姆沙漠新月形沙丘不同部位粒度特征. 中国沙漠, 2013,33(6):1629-1635.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
吴正. 风沙地貌与治沙工程学. 北京: 科学出版社, 2003: 196-201.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
周娜, 张春来, 刘永刚. 雅鲁藏布江米林宽谷段新月形沙丘粒度分异研究. 地理科学, 2011,31(8):958-963.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
吴霞, 哈斯, 杜会石, 等. 库布齐沙漠南缘抛物线形沙丘表面粒度特征. 沉积学报, 2012,30(5):937-944.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
凌智永, 李志忠, 李廷伟. 塔克尔莫乎尔沙漠抛物线形沙丘的粒度分布模式. 中国沙漠, 2014,34(2):325-331.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
董玉祥, 马骏, 黄德全. 福建长乐海岸横向前丘表面粒度分异研究. 沉积学报, 2008,26(5):813-819.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
哈斯, 庄燕美, 王蕾, 等. 毛乌素沙地南缘横向沙丘粒度分布及其对风向变化的响应. 地理科学进展, 2006,25(6):42-51.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
张伟民. 金字塔沙丘粒度变化及表面过程的初步研究. 中国沙漠, 2013,33(6):1615-1621.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
王勇, 韩广, 杨林, 等. 河岸沙丘粒度分布特征. 干旱区研究, 2016,33(1):210-214.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
胡凡根, 李志忠, 靳建辉, 等. 基于释光测年的福建晋江海岸沙丘粒度记录的风沙活动. 地理学报, 2013,68(3):343-356.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
张信宝, DAVID H, 刘维明, 等. 金沙江下游金塘古滑坡堰塞湖阶地. 山地学报, 2013,31(1):127.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
陈赟. 沙漠公路防风固沙技术应用研究. 内蒙古公路与运输, 2007, (2):7-11.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
郭玉起. 塔里木沙漠公路堤式横断面的设计研究. 石油工程建设, 2007,33(5):23-25.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
王世杰. 阿拉尔——和田沙漠公路工程防沙体系防护效益监测与评价. 北京: 中国科学院大学, 2013.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
张彪, 李庆旭, 王爽, 等. 京津风沙源区防风固沙功能的时空变化及其区域差异. 自然资源学报, 2019,34(5):1041-1053.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
段利民, 童新, 吕扬, 等. 固沙植被黄柳、小叶锦鸡儿蒸腾耗水尺度提升研究. 自然资源学报, 2018,33(1):52-62.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
栗忠飞, 高吉喜, 王亚萍. 内蒙古呼伦贝尔南部沙带植被恢复进程中土壤理化特性变化. 自然资源学报, 2016,31(10):1739-1751.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
任远际, 陈静, 龚杰昌. 林芝机场风场特征及对飞机起降的影响. 科技视界, 2012, (27):41-43.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
周娜, 张春来, 刘永刚. 雅鲁藏布江米林宽谷段爬升沙丘粒度分异特征研究. 地理研究, 2012,31(1):82-94.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
吴正. 风沙地貌学. 北京: 科学出版社, 1987.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
董治宝, 李振山. 风成沙粒度特征对其风蚀可蚀性的影响. 土壤侵蚀与水土保持学报, 1998,4(4):2-6, 13.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
董治宝, 苏志珠, 钱广强, 等. 库姆塔格沙漠风沙地貌. 北京: 科学出版社, 2011: 67-124.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
周娜, 尤源, 雷加强, 等. 毛里塔尼亚努瓦克肖特沙丘粒度分布特征及其环境意义. 中国沙漠, 2018,38(2):252-261.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
潘美慧. 西藏定结地区全新世风沙活动研究. 北京: 北京师范大学, 2012.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
杨转玲, 钱广强, 董治宝, 等. 库姆塔格沙漠北部三垄沙地区风成沉积物粒度特征. 中国沙漠, 2016,36(3):589-596.
对位于库姆塔格沙漠北部的三垄沙地区,迄今尚未开展详细的风沙地貌研究。对该区域地表沉积物样品进行粒度分析,旨在探讨不同区域、不同沙丘类型以及沙丘不同地貌部位的沉积物特征差异。结果表明:三垄沙地区地表沉积物以中沙和细沙为主,二者平均含量之和为63.20%,平均粒径为0.95~1.89Φ,分选系数为0.55~1.55,粗于库姆塔格沙漠和塔克拉玛干沙漠,与世界其他沙海沙物质相比属于偏粗粒径。三垄沙地区的主要沙丘类型为新月形沙丘或沙丘链,其北部发育有线形沙丘;这两种沙丘表层沉积物平均粒径均属于中沙范围,且从沙丘底部到丘顶平均粒径变大、分选变好,最粗的沙粒出现在沙丘顶部,平均粒径分别为1.64Φ和0.71Φ,不同于其他地区沙丘顶部沉积物最细的分布模式。从概率累积曲线来看,流动沙丘多为二段或三段式,风成沙砾浪和剥蚀残丘多为三段或四段式,表明后者经历的分选过程较短。本区地表沉积物的平均粒径沿主导风向有变小的趋势,其中,新月形沙丘和线形沙丘的这一特征最为明显。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
代亚亚, 何清, 陆辉, 等. 塔克拉玛干沙漠腹地复合型纵向沙垄区近地层沙尘水平通量及粒度特征. 中国沙漠, 2016,36(4):918-924.
利用BSNE梯度集沙仪采集塔克拉玛干沙漠腹地复合型纵向沙垄区近地层80m高度内秋季不同高度的沙尘物质,探讨沙尘天气下水平输沙通量差异及沙尘的粒度特征。结果表明:由于受到复合型纵向沙垄的影响,沙尘天气过程近地层沙尘水平通量并不遵循幂函数或指数函数分布,在20m以下随高度增加而降低,在32~63m随高度增加而增大,并且在24m和63m两个高度处出现转折点。各层沙尘平均粒径64~80μm,以极细沙为主,分选系数0.96~1.12,分选性中等偏差。粒径频率曲线呈双峰分布,主峰值出现在80~110μm,次峰值在10~12μm,反映了沙尘组成的复杂性,远源沙尘在各高度层的变化幅度较小,以局地和区域源为主。沙尘水平通量与沙尘粒度变化表明沙尘天气主导风速风向、强烈的上升运动及纵向沙垄是影响沙尘水平通量垂直差异的重要因素。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
陈渭南. 塔克拉玛干沙漠84°E沿线沙物质的粒度特征. 地理学报, 1993,48(1):33-46.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
王勇, 韩广, 杨林, 等. 响水河中游右岸沙丘群粒度分布特征. 中国沙漠, 2017,37(1):26-32.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
王勇. 科尔沁沙地西部响水河中游右岸沙丘群的沙源分析. 湖南: 湖南师范大学, 2016.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[43] |
A grain-size study was conducted on the surface sediments found east of Kumtagh Desert and its connected geomorphic units, such as the wadi, wetland, oasis, and alluvial fan. The frequency, cumulative curves, and scatter diagrams of four grain-size parameters, namely, the mean grain size, sorting, skewness, and kurtosis, were plotted to study the grain-size characteristics of each sediment. Multiple discriminant analyses were applied to distinguish the deposition environments. Results indicated large diversities in the sediments from different environments. The aeolian sediments from the sandy desert and the gobi land show uniform characteristics or homogeneous changes. The sand resources from the eastern part of the desert can be considered as the alluvial deposits from the southern Altyn Tagh Mountain carried by several erosion gullies. Meanwhile, the western Mingsha Megadune inherited sediments from the nearby Danghe River. The discriminant functions proposed by Sahu can distinguish the deposition process. However, these functions lose their accuracy when applied to heavily eroded aeolian and gobi sediments. (C) 2014 Elsevier B.V.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |