
China's cross-border energy relations between direct trade and embodied transfers: Based on "the Belt and Road" energy cooperation
HAN Meng-yao, XIONG Jiao, LIU Wei-dong
JOURNAL OF NATURAL RESOURCES ›› 2020, Vol. 35 ›› Issue (11) : 2674-2686.
China's cross-border energy relations between direct trade and embodied transfers: Based on "the Belt and Road" energy cooperation
Along with the proposal of "the Belt and Road" Initiative, energy connectivity has become an essential component of China's overseas cooperation. In "the Belt and Road" energy cooperation, it is of great significance to depict and compare the cross-border relations from the dual perspectives of direct energy trade and embodied energy transfers. The main conclusions include: (1) From the direct perspective, countries such as Saudi Arabia and Russia are essential energy importers of China; (2) From the embodied perspective, China provides a large amount of energy-intensive products to countries such as India, Singapore and Thailand within "the Belt and Road" region; (3) China's direct energy trade with "the Belt and Road" region is in deficit, while the embodied energy transfer is in surplus; (4) Through synthetic consideration of direct energy trade and embodied energy transfers, China can further extend the radiating effects of different energy relations, and provide a solid foundation for energy connectivity and cooperation partnership between China and "the Belt and Road" countries.
"the Belt and Road" Initiative / energy trade / embodied energy / cross-border cooperation / supply demand balance {{custom_keyword}} /
Table 1 Input-output structure表1 投入产出结构 |
投入 | 产出 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
中间使用 | 最终使用 | 总产出 | ||||||||||||
区域1 | … | 区域m | 区域1 | … | 区域m | |||||||||
部门1 | … | 部门n | 部门1 | … | 部门n | |||||||||
区域1 | 部门1 | |||||||||||||
… | ||||||||||||||
部门n | ||||||||||||||
… | ||||||||||||||
区域m | 部门1 | |||||||||||||
… | ||||||||||||||
部门n | ||||||||||||||
增加值 | ||||||||||||||
能源投入 |
Table 2 Input-output structure表2 China's direct energy trade and embodied energy transfers with "the Belt and Road" region (千t) |
区域 | 直接能源贸易 | 隐含能源流动 | 从贸易到消费 | |||||
---|---|---|---|---|---|---|---|---|
进口 | 出口 | 进口 | 出口 | 进口 | 出口 | |||
中东欧 | 0 | 0 | 331.41 | 2976.49 | 331.41 | 2976.49 | ||
中亚 | 26798.14 | 0.02 | 314.49 | 205 | 27112.63 | 205.02 | ||
蒙俄 | 74721.00 | 0.38 | 1531.90 | 1569.80 | 76252.90 | 1570.18 | ||
南亚 | 0 | 449.82 | 1348.82 | 3758.24 | 1348.82 | 4208.06 | ||
东南亚 | 52032.01 | 1212.60 | 8951.81 | 9216.06 | 60983.82 | 10428.66 | ||
西亚中东 | 177101.86 | 454.47 | 1701.81 | 7151.97 | 178803.68 | 7606.44 | ||
合计 | 330653.01 | 2117.29 | 14180.24 | 24877.56 | 344833.26 | 26994.85 | ||
全球占比/% | 60.47 | 27.18 | 31.35 | 19.87 | 58.72 | 20.30 |
区域 | 煤炭 | 石油 | 天然气 | |||||
---|---|---|---|---|---|---|---|---|
进口 | 出口 | 进口 | 出口 | 进口 | 出口 | |||
东南亚 | 39706.91 | 4800.10 | 8954.40 | 4093.07 | 12334.31 | 1530.31 | ||
蒙俄 | 31088.39 | 746.75 | 43995.41 | 608.94 | 1169.66 | 211.25 | ||
南亚 | 307.24 | 1608.21 | 7326.23 | 2008.56 | 325.85 | 589.83 | ||
西亚中东 | 54.53 | 3246.28 | 172594.10 | 3313.67 | 6155.18 | 1050.41 | ||
中东欧 | 38.07 | 1381.85 | 145.56 | 1178.20 | 147.75 | 417.00 | ||
中亚 | 59.12 | 98.50 | 5,077.96 | 79.26 | 21975.93 | 27.44 | ||
合计 | 71254.27 | 11881.69 | 238093.67 | 11281.69 | 42108.68 | 3826.24 | ||
全球占比/% | 41.82 | 19.70 | 66.14 | 20.87 | 68.25 | 20.57 |
Table 5 Cross-border energy relations between China and countries within and outside "the Belt and Road" region |
类别 | 中国与“一带一路”沿线国家 | 中国与“一带一路”沿线以外国家 | ||||
---|---|---|---|---|---|---|
直接能源贸易 | 隐含能源流动 | 直接能源贸易 | 隐含能源流动 | |||
总体贸易模式 | 逆差 | 顺差 | 逆差 | 顺差 | ||
贸易占比 | 占中国能源总进口比例的58.25% | 占中国能源总出口比例的20.30% | 占中国能源总进口比例的41.75% | 占中国能源总出口比例的79.70% | ||
贸易结构 | 进口 | 关联度高 | 关联度低 | 与部分国家关联度高 | 关联度低 | |
出口 | 关联度低 | 关联度较高 | 关联度低 | 关联度高 | ||
能源类型 | 进口能源类型以石油为主,占比69.05%;出口能源类型主要为煤炭和石油,占比在40%左右 | 进口能源类型主要为煤炭和石油,占比分别为49.31%和40.10%;出口能源类型主要为煤炭和石油,占比均在40%左右 | ||||
典型区域 | 东南亚:直接能源逆差,存在少量隐含能源顺差;南亚:直接能源与隐含能源均为顺差;西亚中东:直接能源呈现逆差,隐含能源呈现顺差 | 美国:直接能源大致均衡,隐含能源逆差明显;南美:直接能源呈现逆差,隐含能源呈现顺差;非洲:直接能源呈现逆差,隐含能源呈现顺差 |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
高天明, 沈镭, 刘立涛, 等. 中国煤炭资源不均衡性及流动轨迹. 自然资源学报, 2013,28(1):92-103.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
成升魁, 徐增让, 沈镭. 中国省际煤炭资源流动的时空演变及驱动力. 地理学报, 2008,63(6):603-612.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
赵媛, 郝丽莎. 我国石油资源空间流动的形成机制. 地理研究, 2008,27(5):1027-1036.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
王宜强, 赵媛, 郝丽莎. 能源资源流动的研究视角、主要内容及其研究展望. 自然资源学报, 2014,29(9):1613-1625.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
马远, 徐丽丽. “一带一路”沿线国家天然气贸易网络结构及影响因素. 世界经济研究, 2017, (3):109-121.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
安琪儿, 安海忠, 王朗. 中国产业间隐含能源流动网络分析. 系统工程学报, 2014,29(6):754-762.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
彭焜, 朱鹤, 王赛鸽, 等. 基于系统投入产出和生态网络分析的能源—水耦合关系与协同管理研究: 以湖北省为例. 自然资源学报, 2018,33(9):1514-1528.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
张琦峰, 方恺, 徐明, 等. 基于投入产出分析的碳足迹研究进展. 自然资源学报, 2018,33(4):696-708.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
韩梦瑶, 姚秋蕙, 劳浚铭, 等. 中国省域碳排放的国内外转移研究: 基于嵌套网络视角. 中国科学: 地球科学, 2020,50(6):748-760.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
邹嘉龄, 刘春腊, 尹国庆, 等. 中国与“一带一路”沿线国家贸易格局及其经济贡献. 地理科学进展, 2015,34(5):598-605.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
International Trade Centre, https://www.intracen.org/.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
国家发展改革委, 外交部, 商务部. 推动共建丝绸之路经济带和21世纪海上丝绸之路的愿景与行动. 北京: 外文出版社, 2015.
[ National Development and Reform Commission, Ministry of Foreign Affairs, Ministry of Commerce. Visionand Actions on Jointly Building Silk Road Economic Belt and 21st-Century Maritime Silk Road. Beijing: Foreign Languages Press, 2015.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
刘卫东. “一带一路”倡议的科学内涵与科学问题. 地理科学进展, 2015,34(5):538-544.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
贾琨, 杨艳昭, 封志明. “一带一路”沿线国家粮食生产的时空格局分析. 自然资源学报, 2019,34(6):1135-1145.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
姚秋蕙, 韩梦瑶, 刘卫东. “一带一路”沿线地区隐含碳流动研究. 地理学报, 2018,73(11):2210-2222.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
胡涛, 吴玉萍, 沈晓悦, 等. 我国对外贸易的资源环境逆差分析. 中国人口·资源与环境, 2008,18(2):204-207.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
刘建国, 梁琦. “一带一路”能源合作问题研究. 中国能源, 2015, (7):17-20.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
韦韬, 彭水军. 基于多区域投入产出模型的国际贸易隐含能源及碳排放转移研究. 资源科学, 2017,39(1):94-104.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
We have developed a new series of environmentally extended multi-region input-output (MRIO) tables with applications in carbon, water, and ecological footprinting, and Life-Cycle Assessment, as well as trend and key driver analyses. Such applications have recently been at the forefront of global policy debates, such as about assigning responsibility for emissions embodied in internationally traded products. The new time series was constructed using advanced parallelized supercomputing resources, and significantly advances the previous state of art because of four innovations. First, it is available as a continuous 20-year time series of MRIO tables. Second, it distinguishes 187 individual countries comprising more than 15,000 industry sectors, and hence offers unsurpassed detail. Third, it provides information just 1-3 years delayed therefore significantly improving timeliness. Fourth, it presents MRIO elements with accompanying standard deviations in order to allow users to understand the reliability of data. These advances will lead to material improvements in the capability of applications that rely on input-output tables. The timeliness of information means that analyses are more relevant to current policy questions. The continuity of the time series enables the robust identification of key trends and drivers of global environmental change. The high country and sector detail drastically improves the resolution of Life-Cycle Assessments. Finally, the availability of information on uncertainty allows policy-makers to quantitatively judge the level of confidence that can be placed in the results of analyses.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |