
The spatiotemporal dynamic correlation analysis of haze pollution and inbound tourism in central and eastern China
Dong XU, Zhen-fang HUANG, Rui HUANG, Guo-lin HOU, Fang-dong CAO
JOURNAL OF NATURAL RESOURCES ›› 2019, Vol. 34 ›› Issue (5) : 1108-1120.
The spatiotemporal dynamic correlation analysis of haze pollution and inbound tourism in central and eastern China
In recent years, the haze weather has caused a negative impact on inbound tourism industry, which cannot be ignored. However, the temporal and spatial relationship between haze pollution and inbound tourism and their interaction remain to be discussed. Taking 174 prefecture-level cities in central and eastern China where haze pollution and the development of inbound tourism are typical as an example, this study explored the spatiotemporal dynamic correlation characteristics of haze pollution and inbound tourism from 1998 to 2016 using the methods of Granger Causality Test, Impulse Response Function, Center of Gravity Model and bivariate Local Indicators of Spatial Association (LISA) Model. The results show that: at the temporal level, there is a long-term equilibrium relationship between haze pollution and inbound tourism, and the haze pollution is in the Granger causality with the inbound tourism growth. Although the development of inbound tourism is highly dependent on its own structure, haze pollution still has a significant impact on the stability of inbound tourism growth in a short term, with the impact tending to ease from a long-term perspective. At the spatial level, the centers of gravity of haze pollution and inbound tourism tend to shift to the northeast and northwest, respectively. Although the space-overlaps improved slightly during the study period, there were still obvious spatial dislocations between the centers of haze pollution and inbound tourism. On the whole, both haze pollution and inbound tourism growth in central and eastern China have significantly negative spatial autocorrelation with an increasing trend. The bivariate local spatial correlation patterns are dominated by the High-Low and Low-High agglomeration types among cities. The areas where haze pollution curbs the inbound tourism growth seriously are mainly located in eastern Henan, northern Anhui and central Hubei, showing a certain spatial dependence. This study contributes to the knowledge gap regarding the spatiotemporal relationship between haze pollution and inbound tourism demand on the scale of prefecture-level cities. The findings have implications for local governments and departments related to regional inbound tourism industry to properly cope with the haze weather so as to achieve high-quality development.
haze pollution / inbound tourism / spatiotemporal dynamic correlation / central and eastern China {{custom_keyword}} /
Table 1 Results of unit root test of haze pollution and inbound tourism |
检验方法 | LLC | IPS | ADF-Fisher | PP-Fisher | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
统计量 | 概率 | 统计量 | 概率 | 统计量 | 概率 | 统计量 | 概率 | ||||
lnPM | -3.826 | 0.201 | -6.906 | 0.299 | 4.954 | 0.792 | 3.980 | 0.448 | |||
△lnPM | -14.936 | 0.000 | -15.787 | 0.000 | -1.891 | 0.000 | -1.063 | 0.000 | |||
lnInT | -7.601 | 0.109 | 2.096 | 0.982 | 3.757 | 0.147 | 3.788 | 0.122 | |||
△lnInT | -9.755 | 0.000 | -4.118 | 0.000 | 1.996 | 0.000 | 1.410 | 0.000 |
注:单位根检验类型设定为包含截距项不含趋势线;△代表一阶差分。 |
Fig. 2 Response of inbound tourism to haze pollution from 1998 to 2016 |
Table 2 Variance decomposition of the impact of haze pollution on inbound tourism |
周期 | 方差分解 | 周期 | 方差分解 | ||||
---|---|---|---|---|---|---|---|
S.E. | lnInT | lnPM | S.E. | lnInT | lnPM | ||
1 | 0.130 | 100.000 | 0 | 6 | 0.319 | 90.945 | 9.055 |
2 | 0.195 | 93.954 | 6.046 | 7 | 0.336 | 90.947 | 9.053 |
3 | 0.240 | 91.948 | 8.052 | 8 | 0.350 | 90.949 | 9.051 |
4 | 0.273 | 90.943 | 9.057 | 9 | 0.362 | 90.951 | 9.049 |
5 | 0.298 | 89.943 | 10.057 | 10 | 0.372 | 91.002 | 8.998 |
Table 3 The variation of direction and distance of the centers of gravity of haze pollution and inbound tourism |
年份 | 雾霾污染 | 年份 | 入境旅游 | ||||
---|---|---|---|---|---|---|---|
重心(经度, 纬度) | 偏移/km | 方向 | 重心(经度, 纬度) | 偏移/km | 方向 | ||
1998 | 115°35'25''E, 32°22'8''N | — | — | 1998 | 116°0'39''E, 29°9'59''N | — | — |
1999 | 115°34'26''E, 32°23'8''N | 2.387 | 西北 | 1999 | 116°4'5''E, 29°16'20''N | 12.367 | 东北 |
2000 | 115°34'55''E, 32°28'15''N | 9.366 | 西北 | 2000 | 116°0'10''E, 29°18'44''N | 5.593 | 东北 |
2001 | 115°37'18''E, 32°29'18''N | 3.931 | 东北 | 2001 | 115°34'48''E, 28°12'18''N | 133.710 | 西南 |
2002 | 115°38'43''E, 32°24'18''N | 9.383 | 东南 | 2002 | 116°12'37''E, 29°35'17''N | 166.026 | 东北 |
2003 | 115°38'5''E, 32°18'57''N | 9.865 | 东南 | 2003 | 116°29'45''E, 29°20'45''N | 38.674 | 东南 |
2004 | 115°36'30''E, 32°17'22''N | 3.799 | 西南 | 2004 | 116°20'32''E, 29°45'8''N | 46.083 | 西北 |
2005 | 115°36'10''E, 32°25'14''N | 14.405 | 西北 | 2005 | 116°20'55''E, 30°1'2''N | 29.389 | 西北 |
2006 | 115°37'41''E, 32°25'30''N | 2.407 | 东北 | 2006 | 116°5'33''E, 29°45'53''N | 37.375 | 西南 |
2007 | 115°40'8''E, 32°17'17''N | 13.667 | 东南 | 2007 | 116°8'19''E, 30°7'34''N | 40.318 | 西北 |
2008 | 115°40'26''E, 32°17'43''N | 2.450 | 东北 | 2008 | 116°5'12''E, 30°10'6''N | 6.831 | 西北 |
2009 | 115°37'48''E, 32°21'59''N | 8.750 | 西北 | 2009 | 116°7'2''E, 30°19'30''N | 14.901 | 东北 |
2010 | 115°34'52''E, 32°26'59''N | 10.209 | 西北 | 2010 | 115°59'40''E, 30°22'3''N | 9.001 | 西北 |
2011 | 115°34'29''E, 32°37'33''N | 19.326 | 西北 | 2011 | 115°58'25''E, 30°25'24''N | 6.435 | 西北 |
2012 | 115°35'23''E, 32°41'48''N | 7.875 | 东北 | 2012 | 115°55'37''E, 30°30'56''N | 8.639 | 西北 |
2013 | 115°46'59''E, 32°18'38''N | 46.026 | 东南 | 2013 | 115°50'43''E, 30°25'46''N | 12.316 | 西南 |
2014 | 115°44'40''E, 31°54'18''N | 44.067 | 东南 | 2014 | 115°50'40''E, 30°30'42''N | 9.098 | 西北 |
2015 | 115°55'59''E, 32°13'7''N | 38.735 | 东北 | 2015 | 115°46'54''E, 30°31'7''N | 6.077 | 西北 |
2016 | 115°55'17''E, 32°22'41''N | 17.527 | 西北 | 2016 | 115°46'20''E, 30°34'18''N | 4.392 | 西北 |
Fig. 3 The centers of gravity path of haze pollution and inbound tourism from 1998 to 2016 |
Fig. 4 Space-overlaps and changes in consistency of the centers of gravity of haze pollution and inbound tourism |
Fig. 6 Bivariate LISA clustering of haze pollution and inbound tourism |
[1] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |