With the development of technological revolution and industrial transformation, the global supply and demand situation of metal resources have undergone significant adjustments. The United States, Japan, European Union and other major developed countries continue forcing China to open the preponderant metal supply in the existing multilateral trading system. Evaluating the risk of China’s preponderant metals’ supplying global demand is significant to guarantee the national metal resource security. Based on defining the scope of China’s preponderant metals, this paper gives a quantitative assessment on the risk of China’s preponderant metals’ supplying global demand from three dimensions: reliability, sustainability and affordability. The results show that: 1) The overall supply risk of China’s preponderant metals is high. Indium and bismuth are in high risk, having risk scores over 80; Antimony, germanium, barium, magnesium, tungsten and rare earth are in mid-high risk, having risk scores between 60-80; only gallium and strontium are in mid-risk, having risk scores between 40-60. 2) The reliability risk of barium is the highest which is 81.88, followed by the reliability risk of antimony which is 81.32, and rare earth has the lowest reliability risk which is only 42.42. Indium has the highest sustainability risk which is 81.80, while antimony has the lowest sustainability risk which is 69.46. Indium also has the highest affordability risk which is up to 100, followed by bismuth which has the affordability risk score of 89.23, and barium has the lowest affordability risk which is just 33.96. 3) With the rapid development of emerging industries, the supply risk of antimony, germanium, barium, magnesium, tungsten, indium and bismuth will increase in 2025. More severe supply circumstances will be faced by China’s preponderant metals.
Key words
China's preponderant metal /
emerging industry /
global demand /
metal resource security /
supply risk
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] National Research Council (US). Minerals, Critical Minerals, and the US Economy [M]. Washington D C: National Academies Press, 2008.
[2] European Commission. Report of the Ad-hoc working group on defining critical raw materials: Critical raw materials for the EU 2014 [EB/OL]. http://ec.europa.eu/enterprise/policies/raw_materials/files/docs/crm_reporton_critical_raw_materials_en.pdf.
[3] 日本の産業は. 戦略的な資源の確保します [EB/OL]. http://www.enecho.meti.go.jp/committee/council/basic_problem_committee/028/pdf/28sankou1-2.pdf.
[Ministry of Economy, Trade and Industry of Japan.Strategy of Metal resources guarantee. http://www.enecho.meti.go.jp/committee/council/basic_problem_committee/028/pdf/28sankou1-2.pdf. ]
[4] 陈其慎, 于汶加, 张艳飞, 等. 中国战略性矿产研究报告 [R]. 北京: 中国地质科学院全球矿产资源战略研究中心, 2014.
[CHEN Q S, YU W J, ZHANG Y F, et al.The research report of China’s strategic minerals. Beijing: The Chinese Academy of Geological Sciences Global Mineral Resources Strategy Research Center, 2014. ]
[5] GRAEDEL T E, HARPER E M, NASSAR N T, et al.Criticality of metals and metalloids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(14): 4257-4262.
[6] GRAEDEL T E, BARR R, CHANDLER C, et al.Methodology of metal criticality determination[J]. Environmental Science & Technology, 2012, 46(2): 1063-1070.
[7] 李鹏飞, 杨丹辉, 渠慎宁, 等. 稀有矿产资源的全球供应风险分析——基于战略性新兴产业发展的视角[J]. 世界经济研究, 2015(2): 96-105.
[LI P F, YANG D H, QU S N, et al.Analysis on global supply risk of rare minerals: From the perspective of strategic emerging industry development. World Economy Studies, 2015(2): 96-105. ]
[8] GEMECHU E D, HELBIG C, SONNEMANN G, et al.Import-based indicator for the geopolitical supply risk of raw materials in life cycle sustainability assessments[J]. Journal of Industrial Ecology, 2015, 20(1): 154-165.
[9] GLÖSER-CHAHOUD S, ESPINOZA L T, WALZ R, et al. Taking the Step towards a more dynamic view on raw material criticality: An indicator based analysis for Germany and Japan[J]. Resources, 2016, 5(4): 45.
[10] SKIRROW R G, HUSTON D L, MERNAGH T P, et al.Critical commodities for a high-tech world: Australia’s potential to supply global demand [R]. Geoscience Australia, Canberra, 2013.
[11] 张新安, 张迎新. 把“三稀”金属等高技术矿产的开发利用提高到战略高度[J]. 国土资源情报, 2011(6): 2-7.
[ZHANG X A, ZHANG Y X.Raise the development and utilization of the “three dilute” metal and other high-tech minerals to a strategic height. Land and Resources Information, 2011(6): 2-7. ]
[12] 谷树忠, 姚予龙, 沈镭, 等. 资源安全及其基本属性与研究框架[J]. 自然资源学报, 2002, 17(3): 280-285.
[GU S Z, YAO Y L, SHEN L, et al.Conceptual framework and research focus of resource security. Journal of Natural Resources, 2002, 17(3): 280-285. ]
[13] GRAEDEL T E, ALLWOOD J, BIRAT J P, et al.What do we know about metal recycling rates?[J]. Journal of Industrial Ecology, 2011, 15(3): 355-366.
[14] STEEN B.A systematic approach to Environmental Priority Strategies in Product Development (EPS): Version 2000—General system characteristics [R]. Gothenburg: Centre for Environmental Assessment of Products and Material Systems, 1999.
[15] HATAYAMA H, TAHARA K.Criticality assessment of metals for Japan’s resource strategy[J]. Materials Transactions, 2015, 56(2): 229-235.
[16] NASSAR N T, BARR R, BROWNING M, et al.Criticality of the geological copper family[J]. Environmental Science & Technology, 2012, 46(2): 1071-1078.
[17] 张艳飞, 陈其慎, 于汶加, 等. 中国矿产资源重要性二维评价体系构建[J]. 资源科学, 2015, 37(5): 883-890.
[ZHANG Y F, CHEN Q S, YU W J, et al.Building a two dimensional coordinate evaluation system of mineral resource importance. Resources Science, 2015, 37(5): 883-890. ]
[18] DUCLOS S J, OTTO J P, KONITZER D G.Design in an era of constrained resources[J]. Mechanical Engineering, 2010, 132(9): 36-40.
[19] 李鹏飞, 杨丹辉, 渠慎宁, 等. 稀有矿产资源的战略性评估——基于战略性新兴产业发展的视角[J]. 中国工业经济, 2014(7): 44-57.
[LI P F, YANG D H, QU S N, et al.A strategic assessment of rare minerals based on the perspective of strategic emerging industries development. China Industrial Economics, 2014(7): 44-57. ]
[20] HENCKENS M, DRIESSEN P P J, WORRELL E. How can we adapt to geological scarcity of antimony? Investigation of antimony’s substitutability and of other measures to achieve a sustainable use[J]. Resources, Conservation and Recycling, 2016, 108: 54-62.
[21] Czech Geological Survey.Rare Earths—not so rare and perhaps not so critical? [R]. Czech Geological Survey, 2015.
[22] 刘存成, 胡畅. 基于MATLAB用蒙特卡洛法评定测量不确定度 [M]. 北京: 中国标准出版社, 2014.
[LIU C C, HU C.Measurement of Uncertainty by Monte Carlo Method Based on MATLAB. Beijing: Standards Press of China, 2014. ]
[23] GRANDELL L, LEHTILÄ A, KIVINEN M, et al.Role of critical metals in the future markets of clean energy technologies[J]. Renewable Energy, 2016, 95: 53-62.
[24] United States Department of Energy. Critical material strategy [R]. Washington: United States Department of Energy, 2010.
[25] HABIB K, WENZEL H.Exploring rare earths supply constraints for the emerging clean energy technologies and the role of recycling[J]. Journal of Cleaner Production, 2014, 84: 348-359.
[26] BUCHERT M, SCHÜLER D, BLEHER D, et al. Critical Metals for Future Sustainable Technologies and Their Recycling Potential[M]. UNEP DTIE, Öko-Institut, 2009.
[27] ANGERER G.Karlsruhe Fraunhofer-Institut für System-und Innovationsforschung. Rohstoffe für Zukunftstechno logien: Einfluss des branchenspezifischen Rohstoffbedarfs in rohstoffintensiven Zukunftstechnologien auf die zukünftige Rohstoffnachfrage[M]. Fraunhofer-IRB-Verlag, 2009.
{{custom_fnGroup.title_en}}
Footnotes
{{custom_fn.content}}
Funding
National Social Science Foundation of China, No. 14ZDB136 and 13BGL105;National Natural Science Foundation of China, No. 71633006;Innovation Platform Open Foundation of Education Department in Hunan Provincial, No. 16K101;Graduate Student Innovation Project of Central South University, No. 2017zzts283
{{custom_fund}}