Extraction of Forest Vegetation Information Using GF-1 Imagery

TAO Huan, LI Cun-jun, ZHOU Jing-ping, DONG Xi, WANG Ai-meng, LÜ Hong-peng

JOURNAL OF NATURAL RESOURCES ›› 2018, Vol. 33 ›› Issue (6) : 1068-1079.

PDF(1586 KB)
PDF(1586 KB)
JOURNAL OF NATURAL RESOURCES ›› 2018, Vol. 33 ›› Issue (6) : 1068-1079. DOI: 10.31497/zrzyxb.20170570
Resource Research Method

Extraction of Forest Vegetation Information Using GF-1 Imagery

  • TAO Huan1, LI Cun-jun1, ZHOU Jing-ping1, DONG Xi1, WANG Ai-meng1, LÜ Hong-peng2
Author information +
History +

Abstract

Accurate and up-to-date forest vegetation mapping can provide a better understanding of forest resources and support decision-makers in implementing sustainable forest management. Unfortunately, the distribution information of forests plantation with high accuracy and fine spatial resolution is still not yet conveniently available. Remote-sensing technologies are common used in mapping forest vegetation owing to their real-time data acquisition ability. However, extraction of forest vegetation information using single date remote-sensing imagery has been unsuccessful since the existence of similarity in spectrum feature between forest and field crops. Combination of seasonal variations of spectral response and phenological differences between forest vegetation and field crops presents a unique opportunity for forest mapping. Therefore, a method for extracting forest vegetation using multi-temporal GF-1 imagery was proposed and validated in Bengbu City. Based on the phenological changes of forest and dominant field crops in the study area, the whole region was separated into 2 sub-regions (sub-region A and sub-region B), and 5 phases of GF-1 imagery were utilized. Then, 2 sets of decision rules were built and applied to the corresponding sub-regions. In addition, we implemented forest extraction by non-partitioned decision tree for comparative analysis. The results show that the overall accuracy of both partitioned and non-partitioned decision trees are over 85%, which means that decision tree method using multi-temporal GF-1 imagery can acquire good accuracy when extracting forest vegetation in the large scale and mesoscale. Partitioned decision tree achieves overall accuracy of 90.72% and kappa coefficient of 0.81, which are 3.80%-4.65% and 0.07-0.10 higher than the overall accuracy and kappa coefficient of non-partitioned decision tree, respectively. Free GF-1 imageries with a fine spatial resolution, wide coverage, and low revisit period have great potentials in forests extraction which can benefit forestry aviation plant protection.

Key words

aviation plant protection / decision tree / forest vegetation / GF-1 / multi-temporal phase

Cite this article

Download Citations
TAO Huan, LI Cun-jun, ZHOU Jing-ping, DONG Xi, WANG Ai-meng, LÜ Hong-peng. Extraction of Forest Vegetation Information Using GF-1 Imagery[J]. JOURNAL OF NATURAL RESOURCES, 2018, 33(6): 1068-1079 https://doi.org/10.31497/zrzyxb.20170570

References

[1] 冯仲科, 黄晓东, 刘芳. 森林调查装备与信息化技术发展分析[J]. 农业机械学报, 2015, 46(9): 257-265.
[FENG Z K, HUANG X D, LIU F.Forest survey equipment and development of information technology. Transactions of the CSAM, 2015, 46(9): 257-265. ]
[2] 李涛, 谭伟, 王六平, 等. 遥感影像判读地类在贵州省林地变更调查中的应用[J]. 贵州农业科学, 2013, 41(9): 172-175.
[LI T, TAN W, WANG L P, et al.Application research of remote sensing image interpretation in survey of forest land change in Guizhou. Guizhou Agricultural Sciences, 2013, 41(9): 172-175. ]
[3] 庞国锦, 董晓峰, 宋翔, 等. “三北”防护林建设以来河西走廊林地变化的遥感监测[J]. 中国沙漠, 2012, 32(2): 539-544.
[PANG G J, DONG X F, SONG X, et al.Remote sensing monitoring of forest land change in Hexi Corridor since contraction of the Three-North Shelterbelt Project. Journal of Desert Research, 2012, 32(2): 539-544. ]
[4] 张兴余, 刘勇, 许宝荣, 等. 乌兰布和沙漠高分辨率遥感影像梭梭林解译方法探讨[J]. 遥感技术与应用, 2010, 25(6): 828-835.
[ZHANG X Y, LIU Y, XU B R, et al.Discussion on the method of high-resolution remote sensor data interpretation of Haloxylon ammodendron in Ulan Buh Desert. Remote Sensing Technology and Application, 2010, 25(6): 828-835. ]
[5] 杨存建, 周其林, 任小兰, 等. 基于多时相MODIS数据的四川省森林植被类型信息提取[J]. 自然资源学报, 2014, 29(3): 507-515.
[YANG C J, ZHOU Q L, REN X L, et al.Extracting forest vegetation types from multi-temporal MODIS imagery in Sichuan Province. Journal of Natural Resources, 2014, 29(3): 507-515. ]
[6] 张颖, 王越男, 陈利, 等. 基于Landsat-8影像森林植被信息计算机自动提取研究[J]. 中国农学通报, 2014, 30(28): 61-66.
[ZHANG Y, WANG Y N, CHEN L, et al.Forest vegetation information computer automatic extraction base on Landsat-8. Chinese Agricultural Science Bulletin, 2014, 30(28): 61-66. ]
[7] 雷光斌, 李爱农, 边金虎, 等. 基于阈值法的山区森林常绿、落叶特征遥感自动识别方法——以贡嘎山地区为例[J]. 生态学报, 2014, 34(24): 7210-7221.
[LEI G B, LI A N, BIAN J H, et al.A practical method for automatically identifying the evergreen and deciduous characteristic of forests at mountainous areas: A case study in Mt. Gongga Region. Acta Ecologica Sinica, 2014, 34(24): 7210-7221. ]
[8] CHEN B Q, LI X P, XIAO X M, et al.Mapping tropical forests and deciduous rubber plantations in Hainan Island, China by integrating PALSAR 25-m and multi-temporal Landsat images[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 50: 117-130.
[9] 雷光斌, 李爱农, 谭剑波, 等. 基于多源多时相遥感影像的山地森林分类决策树模型研究[J]. 遥感技术与应用, 2016, 31(1): 31-41.
[LEI G B, LI A N, TAN J B, et al.Forest types mapping in mountainous area using multi-source and multi-temporal satellite images and decision tree models. Remote Sensing Technology and Application, 2016, 31(1): 31-41. ]
[10] 贾明明, 任春颖, 刘殿伟, 等. 基于环境星与MODIS时序数据的面向对象森林植被分类[J]. 生态学报, 2014, 34(24): 7167-7174.
[JIA M M, REN C Y, LIU D W, et al.Object-oriented forest classification based on combination of HJ-1 CCD and MODIS-NDVI data. Acta Ecologica Sinica, 2014, 34(24): 7167-7174. ]
[11] 中华人民共和国国家统计局. 中国统计年鉴 [M]. 北京: 中国统计出版社, 2015.
[National Bureau of Statistics of the People’s Republic of China. Statistical Yearbook of China. Beijing: China Statistics Press, 2015. ]
[12] 陈信文. 蚌埠市农业产业结构优化研究 [D]. 蚌埠: 安徽财经大学, 2015.
[CHEN X W.The Optimization Research on the Industry Structure of Agriculture in Bengbu City. Bengbu: Anhui University of Finance & Economics, 2015. ]
[13] HADJIMITSIS D G, PAPADAVID G, AGAPIOU A, et al.Atmospheric correction for satellite remotely sensed data intended for agricultural applications: Impact on vegetation indices[J]. Natural Hazards & Earth System Sciences, 2010, 10(1): 89-95.
[14] ROUSE J W Jr, HAAS R H, SCHELL J A, et al. Monitoring vegetation systems in the great plains with ERTS[C]// FREDEN S C, MERCANTI E P, BECKER M A.Third Earth Resources Technology Satellite-1 Symposium Volume I: Technical Presentations. NASA SP-351. Washington D C: NASA, 1974: 309-317.
[15] 陈利. 基于混合像元分解方法的MODIS森林类型识别研究 [D]. 长沙: 中南林业科技大学, 2014.
[CHEN L.The Forest Type Identity Research Based on MODIS Unmixing Methods. Changsha: Central South University of Forestry & Technology, 2014. ]
[16] 贺鹏, 徐新刚, 张宝雷, 等. 基于多时相GF-1遥感影像的作物分类提取[J]. 河南农业科学, 2016, 45(1): 152-159.
[HE P, XU X G, ZHANG B L, et al.Crop classification extraction based on multi-temporal GF-1 remote sensing image. Journal of Henan Agricultural Sciences, 2016, 45(1): 152-159. ]
[17] 竞霞, 王锦地, 王纪华, 等. 基于分区和多时相遥感数据的山区植被分类研究[J]. 遥感技术与应用, 2008, 23(4): 394-397.
[JING X, WANG J D, WANG J H, et al.Classifying forest vegetation using sub-region classification based on multi-temporal remote sensing images. Remote Sensing Technology and Application, 2008, 23(4): 394-397. ]
[18] 徐伟燕, 孙睿, 金志凤. 基于资源三号卫星影像的茶树种植区提取[J]. 农业工程学报, 2016, 32(S1): 161-168.
[XU W Y, SUN R, JIN Z F.Extracting tea plantations based on ZY-3 satellite data. Transactions of the CSAE, 2016, 32(S1): 161-168. ]
[19] COBURN C A, ROBERTS A C B. A multiscale texture analysis procedure for improved forest stand classification[J]. International Journal of Remote Sensing, 2004, 25(20): 4287-4308.
[20] 陈文倩, 丁建丽, 王娇, 等. 基于高分一号影像的土地覆被分类方法初探[J]. 干旱区地理, 2016, 39(1): 182-189.
[CHEN W Q, DING J L, WANG J, et al.Classification method of land cover based on GF-1 image. Arid Land Geography, 2016, 39(1): 182-189. ]
[21] CARVALHO L M T D, CLEVERS J G P W, SKIDMORE A K, et al. Selection of imagery data and classifiers for mapping Brazilian semideciduous Atlantic forests[J]. International Journal of Applied Earth Observation & Geoinformation, 2004, 5(3): 173-186.
[22] 刘晓娜, 封志明, 姜鲁光, 等. 西双版纳橡胶林地的遥感识别与数字制图[J]. 资源科学, 2012, 34(9): 1769-1780.
[LIU X N, FENG Z M, JIANG L G, et al.Rubber plantations in Xishuangbanna: Remote sensing identification and digital mapping. Resources Science, 2012, 34(9): 1769-1780. ]
[23] LI H Z, ZHANG X L, WANG S H, et al.Scale transformation of forest vegetation coverage based on Landsat TM and SPOT 5 remote sense images data[J]. Advance Journal of Food Science & Technology, 2015, 9(1): 19-27.

Funding

National Natural Science Foundation of China, No. 41571423; Beijing Academy of Agriculture and Forestry Sciences Youth Research Foundation, No. QNJJ201815. ]
PDF(1586 KB)

1206

Accesses

0

Citation

Detail

Sections
Recommended

/