Extracting Tree Species Distribution with Landsat 8 OLI Data

CHI Yu-feng, LAI Ri-wen, YU Li-li, ZHANG Ze-jun, SU Yan-qin, YING Xing-liang

JOURNAL OF NATURAL RESOURCES ›› 2017, Vol. 32 ›› Issue (7) : 1193-1203.

PDF(8663 KB)
PDF(8663 KB)
JOURNAL OF NATURAL RESOURCES ›› 2017, Vol. 32 ›› Issue (7) : 1193-1203. DOI: 10.11849/zrzyxb.20160730
Resource Evaluation

Extracting Tree Species Distribution with Landsat 8 OLI Data

  • CHI Yu-fenga, LAI Ri-wena, YU Li-lia, ZHANG Ze-junb, SU Yan-qina, YING Xing-lianga
Author information +
History +

Abstract

Investigation the distribution of the tree species is significant in the forestry work, and extracting the tree species information from remote sensing images plays an important role. Changting County is located in southwest part of Fujian Province, China. The topography in Changting is characterized by mountains and hills. The climate is humid. The mean temperature is 18 ℃, and the annual precipitation is 1 742.8 mm. Forests cover large proportion of the area in Changting County, more than 80%. In this study, multispectral Landsat-8 OLI imagery data obtained on 22 March 2016 were used. Normalized difference vegetation index (NDVI) was used to distinguish the distribution of the vegetations. From December 2015 to February 2016, 550 sample points were detected which contained four different tree species. One hundred points were used to build knowledge based system (KBS), and the rest 450 points were taken to verify the accuracy of the classification. For the KBS, different tree species have different means of spectral threshold values. Half standard deviation of the threshold value of the 100 points was taken to build the initial KBS, and then it was modified by the good result of the classification. Image expansion method was used to classify the forests. The results of the classification were validated with ground verification data, and compared with results derived from expert knowledge classification. The results show that image expansion method combining spectral and spatial characteristics of different tree species improve the classification accuracy. The overall accuracy and Kappa coefficient were 83.01% and 0.77, respectively, increased by 8.25% and 0.11 when compared with expert knowledge classification. The presented study could provide a reference for distinguishing tree species for forestry investigation with Landsat 8 OLI data.

Key words

image expansion / knowledge system / tree species

Cite this article

Download Citations
CHI Yu-feng, LAI Ri-wen, YU Li-li, ZHANG Ze-jun, SU Yan-qin, YING Xing-liang. Extracting Tree Species Distribution with Landsat 8 OLI Data[J]. JOURNAL OF NATURAL RESOURCES, 2017, 32(7): 1193-1203 https://doi.org/10.11849/zrzyxb.20160730

References

[1] 吴见, 彭道黎. 高光谱遥感林业信息提取技术研究进展 [J]. 光谱学与光谱分析, 2011, 31(9): 2305-2312. [WU J, PENG D L. Advances in researches on hyperspectral remote sensing forestry information-extracting technology. Spectroscopy and Spectral Analysis, 2011, 31(9): 2305-2312. ]
[2] 赵宪文. 中国林业遥感发展中应该关注的几个问题 [J]. 林业科学, 2009, 45(8): 135-140. [ZHAO X W. Key issues on development of remote sensing application in Chinese forestry. Scientia Silvae Sinicae, 2009, 45(8): 135-140. ]
[3] 李宇昊. 无人遥感飞机在林业调查中的应用研究 [D]. 北京: 北京林业大学, 2008. [LI Y H. Study on Application of Unmanned Remote Sensing Vehicle (URSV) in Forest Survey. Beijing: Beijing Forestry University, 2008. ]
[4] 贾玉秋, 李冰, 程永政, 等. 基于GF-1与Landsat-8多光谱遥感影像的玉米LAI反演比较 [J]. 农业工程学报, 2015, 31(9): 173-179. [JIA Y Q, LI B, CHENG Y Z, et al. Comparison between GF-1 images and Landsat-8 images in monitoring maize LAI. Transactions of the CSAE, 2015, 31(9): 173-179. ]
[5] 马建行, 宋开山, 温志丹, 等. 基于Landsat 8影像的不同燃烧指数在农田秸秆焚烧区域识别中的应用 [J]. 应用生态学报, 2015, 26(11): 3451-3456. [MA J X, SONG K S, WEN Z D, et al. Quantification of crop residue burned areas based on burning indices used Landsat 8 image. Chinese Journal of Applied Ecology, 2015, 26(11): 3451-3456. ]
[6] 贾坤, 李强子, 田亦陈, 等. 遥感影像分类方法研究进展 [J]. 光谱学与光谱分析, 2011, 31(10): 2618-2623. [JIA K, LI Q Z, TIAN Y C, et al. A review of classification methods of remote sensing imagery. Spectroscopy and Spectral Analysis, 2011, 31(10): 2618-2623. ]
[7] 李小文. 遥感原理与应用 [M]. 北京: 科学出版社, 2008: 113-118. [LI X W. Theory and Applications of Remote Sensing. Beijing: Science Press, 2008: 113-118. ]
[8] WENTZ E, NELSON D, RAHMAN A, et al. Expert system classification of urban land use/cover for Delhi, India [J]. International Journal of Remote Sensing, 2008, 29(15): 4405-4427.
[9] YU H Y, THAPA R, XU J C, et al. Land use/land cover mapping of an Alpine region used expert system classification: A case study of the Lhasa River Basin, Tibetan Plateau, China [J]. Survey Review, 2011, 43: 269-283.
[10] 杨存建, 周其林, 任小兰, 等. 基于多时相MODIS数据的四川省森林植被类型信息提取 [J]. 自然资源学报, 2014, 29(3): 507-515. [YANG C J, ZHOU Q L, REN X L, et al. Extracting forest vegetation types from multi-temporal MODIS imagery in Sichuan Province. Journal of Natural Resources, 2014, 29(3): 507-515. ]
[11] 徐涵秋, 唐菲. 新一代Landsat系列卫星: Landsat 8遥感影像新增特征及其生态环境意义 [J]. 生态学报, 2013, 33(11): 3249-3257. [XU H Q, TANG F. Analysis of new characteristics of the first Landsat 8 image and their eco-environmental significance. Acta Ecologica Sinica, 2013, 33(11): 3249-3257. ]
[12] YIN C M, HE B B, QUAN X W. Chlorophyll content estimation in arid grasslands from Landsat-8 OLI data [J]. International Journal of Remote Sensing, 2016, 37(3): 615-632.
[13] 牛鲁燕, 张晓艳, 郑继业, 等. 基于Landsat 8 OLI数据的山东省耕地信息提取研究 [J]. 中国农学通报, 2014, 30(34): 264-269. [NIU L Y , ZHANG X Y, ZHENG J Y, et al. Extraction of cultivated land information in Shandong Province based on Landsat 8 OLI data. Chinese Agricultural Science Bulletin, 2014, 30(34): 264-269. ]
[14] 徐婷, 曹林, 佘光辉. 基于Landsat 8 OLI的特征变量优化提取及森林生物量反演 [J]. 遥感技术与应用, 2015, 30(2): 226-234. [XU T, CAO L, SHE G H. Feature extraction and forest biomass estimation based on Landsat 8 OLI. Remote Sensing Technology and Application, 2015, 30(2): 226-234. ]
[15] CRISTINA T, MARIA A, RICHARD L, et al. Detection of changes in semi-natural grasslands by cross correlation analysis with World View-2 images and new Landsat 8 data [J]. Remote Sensing of Environment, 2016, 175: 65-72.
[16] LIU Y X, SUN C, YANG Y H, et al. Automatic extraction of offshore platforms used time-series Landsat-8 Operationa l Land Imager data [J]. Remote Sensing of Environment, 2016, 175: 73-91.
[17] XIE H, LUO X, XU X, et al. Evaluation of Landsat 8 OLI imagery for unsupervised inland water extraction [J]. International Journal of Remote Sensing, 2016, 37(8): 1826-1844.
[18] 甘淑, 袁希平, 何大明. 遥感专家分类系统在滇西北植被信息提取中的应用试验研究 [J]. 云南大学学报(自然科学版), 2003, 25(6): 553-557. [GAN S, YUAN X P, HE D M. An application of vegetation classification in Northwest Yunnan with remote sensing expert classifier. Journal of Yunnan University (Natural Science Edition), 2003, 25(6): 553-557. ]
[19] GÜTTLER F N, LENCO D, PONCELET P, et al. Combining transductive and active learning to improve object-based classification of remote sensing images [J]. Remote Sensing Letters, 2016, 7(4): 358-367.
[20] 钱育蓉, 于炯, 贾振红, 等. 基于决策树的典型荒漠草地遥感分类策略 [J]. 西北农林科技大学学报(自然科学版), 2013, 41(2): 159-166. [QIAN Y R, YU J, JIA Z H, et al. The classification strategy of desert grassland based on decision tree used remote sensing image. Journal of Northwest A & F University (Natural Science Edition), 2013, 41(2): 159-166. ]
[21] 谭永生, 沈掌泉, 贾春燕, 等. 中高分辨率遥感影像融合研究 [J]. 遥感技术与应用, 2007, 22(4): 536-542. [TAN Y S, SHEN Z Q, JIA C Y, et al. The study on image fusion for medium and high spatial resolution remote sensing images. Remote Sensing Technology and Application, 2007, 22(4): 536-541. ]
[22] JULIEN Y, SOBRINO J A, JIMÉNEZ-MUÑOZ J-C. Land use classification from multitemporallandsat imagery used the yearly land cover dynamics (YLCD) method [J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(5): 711-720.
[23] PEÑA-BARRAGÁN J M, NGUGIM K, PLANT R E, et al. Object-based crop identification used multiple vegetation indices, textural featuresand crop phenology [J]. Remote Sensing of Environment, 2011, 115(6): 1301-1316.
[24] 冯美臣,杨武德,张东彦,等. 基于TM和MODIS数据的水旱地冬小麦面积提取和长势监测 [J]. 农业工程学报, 2009, 25(3): 103-109. [FENG M C, YANG W D, ZHANG D Y, et al. Monitoring planting area and growth situation of irrigation-land and dry-land winter wheat based on TM and MODIS data. Transactions of the CSAE, 2009, 25(3): 103-109. ]
[25] 赵萍, 傅云飞, 郑刘根, 等. 基于分类回归树分析的遥感影像土地利用/覆被分类研究 [J]. 遥感学报, 2005, 9(6): 708-716. [ZHAO P, FU Y F, ZHENG L G, et al. Cart based land use/cover classification of remote sensing images. Journal of Remote Sensing, 2005, 9(6): 708-716. ]
[26] 沙占江, 马海州, 李玲琴, 等. 提取干旱区土地覆被信息的方法比较 [J]. 干旱区地理, 2005, 28(1): 59-64. [SHA Z J, MA H Z, LI L Q, et al. Study on the methods of deriving the information of land cover in the arid areas by used TM data. Arid Land Geography, 2005, 28(1): 59-64. ]
[27] 李俊清. 森林生态学 [M]. 第二版. 北京: 高等教育出版社, 2010: 333-335. [LI J Q. Forest Ecology. The Second Edition. Beijing: Higher Education Press, 2010: 333-335. ]
[28] 柏延臣, 王劲峰. 遥感数据专题分类不确定性评价研究: 进展、问题与展望 [J]. 地球科学进展, 2005, 20(11): 66-73. [BO Y C, WANG J F. Assessment on uncertainty in remotely sensed data classification progresses problems and prospects. Advances in Earth Science, 2005, 20(11): 66-73. ]
[29] 刘健, 余坤勇, 亓兴兰, 等. 基于专家分类知识库的林地分类 [J]. 福建农林大学学报(自然科学版), 2006, 35(1): 42-46. [LIU J, YU K Y, QI X L. Forest land cover type classification base on expert system. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2006, 35(1): 42-46. ]

Funding

Ecological Forest Scientific Research Based Construction, No. 61201400814.
PDF(8663 KB)

1622

Accesses

0

Citation

Detail

Sections
Recommended

/