The evolution characteristics of dried up days of river play an important role in recognizing the regional hydrological processes and clarifying the influencing mechanism of human activities, such as hydraulic engineering and water allocation in various fields. Based on the hydrological and climatic data from 1951 to 2014, this study uses Mann-Kendall methods and statistic models of precipitation and runoff accumulation curve to analyze the temporal evolution of dried up days and the influencing mechanisms at the Three Outlets of southern Jingjiang in the middle reach of Yangtze River. The results are as follows: 1) The average dried up days at the Three Outlets increased during 1951-2014 and the trend was significant. The average dried up days also increased during the period of 2003-2014, but the trend was not obvious, namely, the increase trend of the dried up days slowed down. 2) The variation of dried up days was controlled by the variation of runoff at the Three Outlets. And the runoff variations could be explained by climate fluctuations, such as precipitation and evapotranspiration, and human activities, such as hydraulic engineering and water allocation. Which one is the main control remains uncertain. So it is important to separate the influence factors. 3) Using the previous period as the reference period, the contributions of climate fluctuation to the increment of dried up days in each period were 24.93%, 19.05%, 6.36%, 10.38% and 7.56% during the five periods (1959-1966, 1967-1972, 1972-1980, 1981-2002 and 2003-2014), respectively, whereas the contributions of human activity were 75.07%, 80.75%, 93.64%, 89.62% and 92.44% respectively. The result revealed that the increment of dried up days was mainly dominated by human activities from 1951 to 2014.
Key words
climate fluctuation /
dried up days /
hydraulic engineering /
temporal evolution /
Three Outlets river system
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 甘明辉, 刘卡波, 施勇. 洞庭湖四口河系水安全及综合调控 [M]. 北京: 中国水利水电出版社, 2013.
[2] 李景保, 代勇, 李玉丹, 等. 三峡水库蓄水对洞庭湖湿地生态系统服务价值的影响 [J]. 应用生态学报, 2013, 28(3): 809-817.
[3] 李景保, 周永强, 欧朝敏. 洞庭湖与长江水体交换能力演变及对三峡水库运行的响应 [J]. 地理学报, 2013, 68(1): 108-117.
[4] 胡彩虹, 王纪军, 王艺璇. 泌河流域实测径流对环境变化的定量响应分析 [J]. 气候变化研究进展, 2012, 8(3): 213-219.
[5] 董哲仁. 河流生态系统结构功能模型研究 [J]. 水生态学杂志, 2008, 28(5): 1-7.
[6] 方春明, 毛继新, 鲁文. 荆江裁弯造成藕池河急剧淤积与分流分沙减少分析 [J]. 泥沙研究, 2002(2): 40-45.
[7] 林承坤. 洞庭湖水沙特性与湖泊沉积 [J]. 地理科学, 1987, 7(1): 10-17.
[8] 韩剑桥, 孙昭华, 黄颗. 三峡水库蓄水后荆江沙质河段冲淤分布特征及成因 [J]. 水利学报, 2014, 45(3): 277-285.
[9] 刘东生. 三峡水库进出库水沙特征、水库淤积及坝下游河道冲刷分析 (2011年度) [R]. 武汉: 长江水利委员会水文局, 2012.
[10] 戴仕宝, 杨世伦, 赵华云. 三峡水库蓄水运用初期长江中下游河道冲淤响应 [J]. 泥沙研究, 2005(5): 35-39.
[11] 陈桂亚, 袁晶, 许全喜. 三峡工程蓄水运用以来水库排沙效果 [J]. 水科学进展, 2012, 23(3): 355-362.
[12] 长江水利委员会. 2013年长江泥沙公报 [R]. 武汉: 长江出版社, 2014.
[13] 李景保, 钟一苇, 周永强, 等. 三峡水库运行对洞庭湖北部地区水资源开发利用的影响 [J]. 自然资源学报, 2013, 28(9): 1583-1593.
[14] 李林, 戴升, 申红艳. 长江源区地表水资源对气候变化的响应及趋势预测 [J]. 地理学报, 2012, 67(7): 941-950.
[15] 王随继, 闫云霞, 颜明. 皇甫川流域降水和人类活动对径流量变化的贡献率分析——累积量斜率变化率比较方法的提出及应用 [J]. 地理学报, 2012, 67(3): 388-397.
[16] 胡珊珊, 郑红星, 刘昌明. 气候变化和人类活动对白洋淀上游水源区径流的影响 [J]. 地理学报, 2012, 67(1): 62-70.
[17] 林凯荣, 何艳虎, 陈晓宏. 气候变化及人类活动对东江流域径流影响的贡献分解研究 [J]. 水利学报, 2013, 43(11): 1312-1321.
[18] 王彦君, 王随继, 苏腾. 降水和人类活动对松花江径流量变化的贡献率 [J]. 自然资源学报, 2015, 30(3): 304-313.
[19] 张利平, 李凌程, 夏军.气候波动和人类活动对滦河流域径流变化的定量影响分析 [J]. 自然资源学报, 2015, 30(4): 664-671.
[20] YAO H F, SHI C X, SHAO W W. Impacts of climate change and human activities on runoff and sediment load of the Xiliugou Basin in the upper Yellow River [J]. Advances in Meteorology, 2015, 2015(3): 1-12.
{{custom_fnGroup.title_en}}
Footnotes
{{custom_fn.content}}
Funding
National Natural Science Foundation of China, No.41071067; Construct program of the Key Discipline in Hunan Province, China
{{custom_fund}}