其他研究论文

基于社会网络分析的乡村数字化转型及其对农业碳减排影响效应研究

  • 付舒斐 , 1 ,
  • 吕添贵 , 1, 2 ,
  • 朱丽萌 3 ,
  • 樊后宝 1 ,
  • 赵巧 2 ,
  • 陈安莹 2
展开
  • 1.江西财经大学数字经济学院,南昌 330013
  • 2.江西财经大学公共管理学院,南昌 330013
  • 3.江西财经大学经济与社会发展研究院,南昌 330013
吕添贵(1986- ),男,福建龙岩人,博士,教授,研究方向为资源环境保护。E-mail:

付舒斐(1997- ),女,江西新余人,博士研究生,研究方向为生态经济与可持续发展。E-mail:

收稿日期: 2024-12-30

  修回日期: 2025-02-21

  网络出版日期: 2025-08-05

基金资助

国家自然科学基金项目(42261049)

江西省自然科学基金项目(20232BAB203061)

江西省研究生创新专项资金项目(YC2024-B189)

Rural digital transformation and its impact on agricultural carbon emission reduction based on social network analysis

  • FU Shu-fei , 1 ,
  • LYU Tian-gui , 1, 2 ,
  • ZHU Li-meng 3 ,
  • FAN Hou-bao 1 ,
  • ZHAO Qiao 2 ,
  • CHEN An-ying 2
Expand
  • 1. School of Digital Economics, Jiangxi University of Finance and Economics, Nanchang 330013, China
  • 2. School of Public Administration, Jiangxi University of Finance and Economics, Nanchang 330013, China
  • 3. Academy of Economic and Social Development, Jiangxi University of Economics and Finance, Nanchang 330013, China

Received date: 2024-12-30

  Revised date: 2025-02-21

  Online published: 2025-08-05

摘要

揭示乡村数字化转型空间网络对农业碳减排的影响效应,可为推进乡村数字化转型空间联动赋能农业固碳减排提供理论支撑。基于“效率—公平”框架,借助碳减排潜力模型、社会网络分析模型和基准回归模型等方法,探究2011—2022年中国31个省(自治区、直辖市)乡村数字化转型空间关联网络对农业碳减排潜力的影响效应。研究发现:(1)乡村数字化转型指数持续增长,空间上呈现东、中、西部递减格局。(2)农业碳减排潜力指数波动上升,空间上表现为中、东、西递减特征。(3)乡村数字化转型空间关联网络呈现中部地区密集、外围逐层递减的极核式扩散规律,网络密度和关联数波动上升。山东、河南、湖北等地区节点中心度较高。(4)乡村数字化转型空间关联网络节点中心度对农业碳减排潜力具有显著正向影响且影响存在区域异质性。

本文引用格式

付舒斐 , 吕添贵 , 朱丽萌 , 樊后宝 , 赵巧 , 陈安莹 . 基于社会网络分析的乡村数字化转型及其对农业碳减排影响效应研究[J]. 自然资源学报, 2025 , 40(8) : 2252 -2268 . DOI: 10.31497/zrzyxb.20250815

Abstract

This research reveals the impact of the spatial correlation network of rural digital transformation on agricultural carbon emission reduction, and provides a theoretical basis for promoting the spatial linkage of rural digital transformation to enable agricultural carbon sequestration and emission reduction. Based on the "efficiency equity" framework, with the help of carbon emission reduction potential model, social network analysis model and benchmark regression model, this paper explores the impact of rural digital transformation spatial correlation network on agricultural carbon emission reduction potential in 31 provinces (autonomous regions and municipalities) in China from 2011 to 2022. The results show that: (1) The rural digital transformation index has continued to grow, showing a decreasing pattern from eastern to central to western regions. (2) The agricultural carbon emission reduction potential index has fluctuated and risen, with a spatial characteristic of decreasing from central to eastern to western regions. (3) The spatial correlation network of rural digital transformation shows the polar core diffusion law of dense in the central region and decreasing layer by layer in the periphery, and the network density and correlation number fluctuate and rise. Shandong, Henan, Hubei and some other regions have high node centrality. (4) The node centrality of spatial correlation network of rural digital transformation has a significant positive impact on agricultural carbon emission reduction potential, and the impact has regional heterogeneity. In the future, it is essential to solidify a networked mindset to promote the coordinated spatial development of rural digital transformation, break down barriers to the sharing of low-carbon agricultural elements, and achieve a positive interaction between efficiency and equity in agricultural carbon emission reduction.

[1]
吕添贵, 邱蓉, 李泽英, 等. 长江中游粮食主产区耕地碳源汇时空演化特征及驱动因素分析. 农业工程学报, 2024, 40(18): 251-261.

[LYU T G, QIU R, LI Z Y, et al. Spatiotemporal evolution and driving factors of carbon sources and sinks on cultivated land in the main grain producing areas in the middle reaches of the Yangtze River. Transactions of the CSAE, 2024, 40(18): 251-261.]

[2]
XU X B, ZHAO Q R, GUO J B, et al. Inequality in agricultural greenhouse gas emissions intensity has risen in rural China from 1993 to 2020. Nature Food, 2024, 5(11): 916-928.

DOI PMID

[3]
付舒斐, 吕添贵, 朱丽萌, 等. 农业绿色发展对耕地利用碳排放强度的影响机制和空间效应. 中国农业大学学报, 2025, 30(4): 286-299.

[FU S F, LYU T G, ZHU L M, et al. Impact mechanism and spatial effects of agricultural green development on carbon emission intensity of cultivated land use. Journal of China Agricultural University, 2025, 30(4): 286-299.]

[4]
农业农村部,国家发展改革委. 《农业农村减排固碳实施方案》. 农业农村部网站, 2022. https://www.moa.gov.cn/govpublic/KJJYS/202206/P020220630331656855638.pdf?eqid=f5f8427a00000a2e0000000464365e5f.

[5]
XIE Y, CHEN Z, BOADU F, et al. How does digital transformation affect agricultural enterprises' pro-land behavior: The role of environmental protection cognition and cross-border search. Technology in Society, 2022, 70: 101991, Doi: 10.1016/j.techsoc.2022.101991.

[6]
盛科荣, 王丽萍, 孙威. 网络权力、知识溢出对中国城市绿色经济效率的影响. 资源科学, 2021, 43(8): 1509-1521.

DOI

[SHENG K R, WANG L P, SUN W. Impacts of network power and knowledge spillovers on China's urban green economic efficiency. Resources Science, 2021, 43(8): 1509-1521.]

[7]
李家辉, 程雯欣, 陆迁. 数字金融与社会网络对农户精准农业技术采用的影响: 以水肥一体化技术为例. 自然资源学报, 2024, 39(12): 2980-3004.

DOI

[LI J H, CHENG W X, LU Q. The impact of digital finance and social network on the adoption of precision agricultural technology by farmers: Taking water and fertilizer integration technology as an example. Journal of Natural Resources, 2024, 39(12): 2980-3004.]

[8]
殷浩栋, 霍鹏, 汪三贵. 农业农村数字化转型: 现实表征、影响机理与推进策略. 改革, 2020, (12): 48-56.

[YIN H D, HUO P, WANG S G. Agricultural and rural digital transformation: Realistic representation, impact mechanism and promotion strategy. Reform, 2020, (12): 48-56.]

[9]
付舒斐, 朱丽萌, 吕添贵, 等. 乡村数字化转型对耕地绿色利用效率的影响机制及门槛效应研究. 中国土地科学, 2024, 38(4): 90-100, 112.

[FU S F, ZHU L M, LYU T G, et al. Research on the influencing mechanism and threshold effect of rural digital transformation on cultivated land green use efficiency. China Land Science, 2024, 38(4): 90-100, 112.]

[10]
徐妍, 张玉冰. “促进”还是“阻碍”: 数字经济空间关联网络对碳排放绩效的影响. 环境科学, 2025, 46(1): 76-87.

[XU Y, ZHANG Y B. "Facilitate" or "hinder": Impact of spatial connectivity networks in the digital economy on carbon performance. Environmental Science, 2025, 46(1): 76-87.]

[11]
代亚强, 张玥, 柯新利, 等. 乡村地域多功能的空间关联网络结构特征及其对城乡融合发展的影响: 以河南省为例. 自然资源学报, 2023, 38(8): 2059-2075.

DOI

[DAI Y Q, ZHANG Y, KE X L, et al. Structural characteristics of spatial correlation network of rural territorial multi-functions and its impact on urban-rural integrated development: A case study of Henan province. Journal of Natural Resources, 2023, 38(8): 2059-2075.]

[12]
张玥, 代亚强, 柯新利. 中国新型城镇化空间关联网络及其对土地利用生态效率的影响: 基于网络节点中心度视角. 中国土地科学, 2023, 37(9): 117-129.

[ZHANG Y, DAI Y Q, KE X L. Spatial correlation network characteristics of new-type urbanization and its impact on the land use eco-efficiency in China: A perspective of network centrality. China Land Science, 2023, 37(9): 117-129.]

[13]
CHENG L, YE Z L, WEI W, et al. Study on the establishment of air pollutant and carbon emission inventory and collaborative emission reduction potential of China's coking industry from 2012 to 2022. Science of the Total Environment, 2024, 951: 175183, Doi: 10.1016/j.scitotenv.2024.175183.

[14]
GHORBANI M, MOTALLEBI M. The study on shadow price of greenhouse gases emission in Iran: Case of dairy farms. Research Journal of Environmental Sciences, 2009, 3(4): 466-475.

[15]
刘笑杰, 金晓斌, 罗秀丽, 等. 城乡融合对低碳土地利用效率影响的空间效应: 以长三角地区为例. 自然资源学报, 2024, 39(6): 1299-1319.

DOI

[LIU X J, JIN X B, LUO X L, et al. Spatial effects of urban-rural integration on low-carbon land use efficiency: A case study of the Yangtze River Delta. Journal of Natural Resources, 2024, 39(6): 1299-1319.]

[16]
王凯, 余芳芳, 胡奕, 等. 中国旅游业碳减排潜力的空间关联网络结构及其影响因素. 地理科学, 2022, 42(6): 1034-1043.

DOI

[WANG K, YU F F, HU Y, et al. Spatial correlation network structure of tourism carbon emission reduction potential and the determinants in China. Scientia Geographica Sinica, 2022, 42(6): 1034-1043.]

DOI

[17]
周迪, 吴泽文. 中国工业碳减排潜力与路径研究. 中国环境科学, 2019, 39(3): 1306-1314.

[ZHOU D, WU Z W. Potentialities and paths of Chinese industrial carbon emission reduction. China Environmental Science, 2019, 39(3): 1306-1314.]

[18]
朱红根, 陈晖. 中国数字乡村发展的水平测度、时空演变及推进路径. 农业经济问题, 2023, 44(3): 21-33.

[ZHU H G, CHEN H. Measurement, spatial-temporal evolution and promotion path of digital village development in China. Issues in Agricultural Economy, 2023, 44(3): 21-33.]

[19]
安頔, 胡映洁, 万勇. 中国城市网络关联与经济增长溢出效应: 基于大数据与网络分析方法的研究. 地理研究, 2022, 41(9): 2465-2481.

DOI

[AN D, HU Y J, WAN Y. Urban network association and spillover effects of economic growth in China: A study based on big data and network analysis. Geographical Research, 2022, 41(9): 2465-2481.]

[20]
范飞, 谢治菊. 超越“地域性”: 数字技术驱动乡村脱域治理: 基于“陇南乡村大数据系统”的实证考察. 中国农村经济, 2024, (1): 41-61.

[FAN F, XIE Z J. Beyond "regionality": Digital technology drives rural delocalization governance: An empirical investigation based on"Longnan rural big data system". Chinese Rural Economy, 2024, (1): 41-61.]

[21]
SCHNEIDER J M, DELZEIT R, NEUMANN C, et al. Effects of profit-driven cropland expansion and conservation policies. Nature Sustainability, 2024, 7: 1335-1347.

[22]
ZHANG J L, WANG X J, YANG M L, et al. A novel synchronous spatio-temporal relationship network for geographical-related time-spatial series forecasting. Information Sciences, 2025, 689: 121484, Doi: 10.1016/j.ins.2024.121484.

[23]
张明斗, 翁爱华. 长江经济带城市水资源利用效率的空间关联网络及形成机制. 地理学报, 2022, 77(9): 2353-2373.

DOI

[ZHANG M D, WENG A H. Spatial correlation network and its formation mechanism of urban water utilization efficiency in the Yangtze River Economic Belt. Acta Geographica Sinica, 2022, 77(9): 2353-2373.]

DOI

[24]
吴贤荣, 张俊飚, 程琳琳, 等. 中国省域农业碳减排潜力及其空间关联特征: 基于空间权重矩阵的空间Durbin模型. 中国人口·资源与环境, 2015, 25(6): 53-61.

[WU X R, ZHANG J B, CHENG L L, et al. Potential of agricultural carbon reduction under climate change and its spatial correlation characteristics in China: Based on the spatial durbin model. China Population, Resources and Environment, 2015, 25(6): 53-61.]

[25]
王凤婷, 王浩, 孔凡斌. 农村数字化发展对农业全要素碳生产率的提升效应. 中国人口·资源与环境, 2024, 34(3): 79-90.

[WANG F T, WANG H, KONG F B. Enhancement effect of rural digital development on agricultural total factor carbon productivity. China Population, Resources and Environment, 2024, 34(3): 79-90.]

[26]
田秀娟, 李睿. 数字技术赋能实体经济转型发展: 基于熊彼特内生增长理论的分析框架. 管理世界, 2022, 38(5): 56-73.

[TIAN X J, LI R. Digital technology empowers the transformation and development of real economy: An analysis framework based on schumpeter's endogenous growth theory. Journal of Management World, 2022, 38(5): 56-73.]

[27]
邓宗兵, 肖沁霖, 王炬, 等. 中国数字经济与绿色发展耦合协调的时空特征及驱动机制. 地理学报, 2024, 79(4): 971-990.

DOI

[DENG Z B, XIAO Q L, WANG J, et al. Spatio-temporal characteristics and driving mechanism of the coupling coordination between digital economy and green development in China. Acta Geographica Sinica, 2024, 79(4): 971-990.]

DOI

[28]
MEIJERS E J, BURGER M J, HOOGERBRUGGE M M. Borrowing size in networks of cities: City size, network connectivity and metropolitan functions in Europe. Papers in Regional Science, 2016, 95(1): 181-198.

[29]
吴雨阳, 曹煜玲, 朱悦, 等. 中国包容性绿色发展的空间关联网络与区域分异及收敛性研究. 自然资源学报, 2025, 40(2): 436-458.

DOI

[WU Y Y, CAO Y L, ZHU Y, et al. Spatial correlation network, regional differentiation and convergence of inclusive green development in China. Journal of Natural Resources, 2025, 40(2): 436-458.]

[30]
唐文浩. 数字技术驱动农业农村高质量发展: 理论阐释与实践路径. 南京农业大学学报: 社会科学版, 2022, 22(2): 1-9.

[TANG W H. Digital technology drives high-quality development of agriculture and rural areas: Theoretical interpretation and practical path. Journal of Nanjing Agricultural University: Social Sciences Edition, 2022, 22(2): 1-9.]

[31]
周迪, 郑楚鹏, 华诗润, 等. 公平与效率协调视角下的中国碳减排潜力与路径. 自然资源学报, 2019, 34(1): 80-91.

DOI

[ZHOU D, ZHENG C P, HUA S R, et al. The potentialities and paths of China's carbon emission reduction based on the coordination of fairness and efficiency. Journal of Natural Resources, 2019, 34(1): 80-91.]

DOI

[32]
WEI C, NI J L, DU L M. Regional allocation of carbon dioxide abatement in China. China Economic Review, 2012, 23(3): 552-565.

[33]
TONE K. A slacks-based measure of super-efficiency in data envelopment analysis. European Journal of Operational Research, 2002, 143(1): 32-41.

[34]
刘华军, 刘传明, 孙亚男. 中国能源消费的空间关联网络结构特征及其效应研究. 中国工业经济, 2015, (5): 83-95.

[LIU H J, LIU C M, SUN Y N. Spatial correlation network structure of energy consumption and its effect in China. China Industrial Economics, 2015, (5): 83-95.]

[35]
吉雪强, 刘慧敏, 张跃松. 中国省际土地利用碳排放空间关联网络结构演化及驱动因素. 经济地理, 2023, 43(2): 190-200.

DOI

[JI X Q, LIU H M, ZHANG Y S. Spatiotemporal evolution and driving factors of spatial correlation network structure of China's land-use carbon emission. Economic Geography, 2023, 43(2): 190-200.]

DOI

[36]
田云, 尹忞昊. 中国农业碳排放再测算: 基本现状、动态演进及空间溢出效应. 中国农村经济, 2022, (3): 104-127.

[TIAN Y, YIN M H. Re-evaluation of China's agricultural carbon emissions: Basic status, dynamic evolution and spatial spillover effects. Chinese Rural Economy, 2022, (3): 104-127.]

文章导航

/