青海高原国土空间生态保护修复工程气候变化压力分析
李文卿(1992- ),男,山东潍坊人,博士,工程师,研究方向为国土整治与生态修复。E-mail: liwenqing@lcrc.org.cn |
收稿日期: 2024-05-27
修回日期: 2024-07-11
网络出版日期: 2024-12-16
基金资助
青海省国土整治与生态修复中心政府采购项目 [青海诚鑫公招(服务)](2023-076)
Analysis of climate change pressures on ecological protection and restoration projects of territorial space in Qinghai Plateau
Received date: 2024-05-27
Revised date: 2024-07-11
Online published: 2024-12-16
气候变化是青海高原国土空间生态保护修复工作面临的主要压力之一,然而目前鲜有对该区域生态修复工程气候变化压力的量化分析。聚焦这一问题,基于多源数据,明确1960年以来青海高原的气候变化过程,分析土地覆被类型变化的气候驱动作用,并量化未来气候变化压力。研究发现:青海高原自1960年以来经历了显著的“暖湿化”过程,并呈西部升温快于东部、冬季升温快于夏季的特点。受气候变化的影响,青海高原草地和灌木分布在1980—2020年间呈现普遍扩张趋势,西北局部呈现收缩趋势。气候预测显示,青海高原将面临持续的气候变暖压力,尤其是南部地区。研究结果可为青海高原国土空间生态保护修复工程中相关气候缓解和适应措施的制定提供数据与理论支撑。
李文卿 , 詹培元 , 张亚男 , 杨崇曜 , 闫华 . 青海高原国土空间生态保护修复工程气候变化压力分析[J]. 自然资源学报, 2024 , 39(12) : 2819 -2833 . DOI: 10.31497/zrzyxb.20241205
Climate change is one of the main pressures that the ecological protection and restoration in Qinghai Plateau continues to face, yet there is currently a lack of quantitative analysis of the climate change pressure on ecological restoration projects across this region. Focusing on this issue, this study clarified the climate change process across Qinghai Plateau since 1960, analyzed the driving effects of climate change on the changes in land cover, and quantified the projected future climate change pressures that Qinghai would face during the 21st century, based on multi-source data. We found that Qinghai Plateau has experienced significant warming-wetting trends since 1960, with the change characterized by faster warming in the west than in the east and faster in winter than in summer. Affected by climate changes, the distribution of grass-shrubs in the study area generally expanded from 1980 to 2020, while degraded in the northwest. Climate predictions indicate that Qinghai Plateau is likely to face profound pressures from continued warming trends across the 21st century, especially for the south. Our findings could serve as data and theoretical support for the formulation of relevant climate mitigation and adaptation measures in the ecological protection and restoration projects of territorial space in the plateau.
表1 不同预测情境下涵盖的大气环流模型Table 1 Global circulation models of climate projections under three Shared Socio-economic Pathways |
序号 | 大气环流模型(GCM) | SSP 1-26 | SSP 2-45 | SSP 5-85 |
---|---|---|---|---|
1 | ACCESS-CM2 | ● | ● | ● |
2 | ACCESS-ESM1-5 | ● | ● | ● |
3 | BCC-CSM2-MR | ● | ● | ● |
4 | CanESM5 | ● | ● | ● |
5 | CanESM5-CanOE | ● | ● | ● |
6 | CMCC-ESM2 | ● | ● | ● |
7 | CNRM-CM6-1 | ● | ● | ● |
8 | CNRM-CM6-1-HR | ● | ● | ● |
9 | CNRM-ESM2-1 | ● | ● | ● |
10 | EC-Earth3-Veg | ● | ● | ● |
11 | EC-Earth3-Veg-LR | ● | ● | ● |
12 | FIO-ESM-2-0 | ● | ● | ● |
13 | GFDL-ESM4 | ● | ○ | ○ |
14 | GISS-E2-1-G | ● | ● | ● |
15 | GISS-E2-1-H | ● | ● | ● |
16 | HadGEM3-GC31-LL | ● | ● | ● |
17 | INM-CM4-8 | ● | ● | ● |
18 | INM-CM5-0 | ● | ● | ● |
19 | IPSL-CM6A-LR | ● | ● | ● |
20 | MIROC-ES2L | ● | ● | ● |
21 | MIROC6 | ● | ● | ● |
22 | MPI-ESM1-2-HR | ● | ● | ● |
23 | MPI-ESM1-2-LR | ● | ● | ● |
24 | MRI-ESM2-0 | ● | ● | ● |
25 | UKESM1-0-LL | ● | ● | ● |
注:●表示对应模型有数据,○表示对应模型无数据。 |
[1] |
|
[2] |
傅伯杰, 欧阳志云, 施鹏, 等. 青藏高原生态安全屏障状况与保护对策. 中国科学院院刊, 2021, 36(11): 1298-1306.
[
|
[3] |
王军, 应凌霄, 钟莉娜. 新时代国土整治与生态修复转型思考. 自然资源学报, 2020, 35(1): 26-36.
[
|
[4] |
IPCC. Global Warming of 1.5 ℃: IPCC Special Report on Impacts of Global Warming of 1.5 ℃ above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Cambridge: Cambridge University Press, 2018.
|
[5] |
王宁练, 姚檀栋, 徐柏青, 等. 全球变暖背景下青藏高原及周边地区冰川变化的时空格局与趋势及影响. 中国科学院院刊, 2019, 34(11): 1220-1232.
[
|
[6] |
朱立平, 张国庆, 杨瑞敏, 等. 青藏高原最近40年湖泊变化的主要表现与发展趋势. 中国科学院院刊, 2019, 34(11): 1254-1263.
[
|
[7] |
张慧, 朱文泉, 史培军, 等. 青藏高原各主要植被类型特征及环境差异. 生态学报, 2024, 44(7): 2955-2970.
[
|
[8] |
王军, 张骁, 高岩. 青藏高原植被动态与环境因子相互关系的研究现状与展望. 地学前缘, 2021, 28(4): 70-82.
[
|
[9] |
刘飞, 刘峰贵, 周强, 等. 青藏高原生态风险及区域分异. 自然资源学报, 2021, 36(12): 3232-3246.
[
|
[10] |
|
[11] |
李林, 李晓东, 校瑞香, 等. 青藏高原东北部气候变化的异质性及其成因. 自然资源学报 2019, 34(7): 1496-1505.
[
|
[12] |
陈舒婷, 郭兵, 杨飞, 等. 2000—2015年青藏高原植被NPP时空变化格局及其对气候变化的响应. 自然资源学报, 2020, 35(10): 2511-2527.
[
|
[13] |
丁明军, 张镱锂, 刘林山, 等. 1982—2009年青藏高原草地覆盖度时空变化特征. 自然资源学报, 2010, 25(12): 2114-2122.
[
|
[14] |
杨亮, 刘丽男, 孙少波. 1982—2015年青藏高原植被变化的主导环境因子. 生态学报, 2023, 43(2): 744-755.
[
|
[15] |
刘旻霞, 焦骄, 潘竟虎, 等. 青海省植被净初级生产力(NPP)时空格局变化及其驱动因素. 生态学报, 2020, 40(15): 5306-5317.
[
|
[16] |
贾艳青, 张勃. 1960—2016年中国北方地区极端干湿事件演变特征. 自然资源学报, 2019, 34(7): 1543-1554.
[
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
张慧, 赵涔良, 朱文泉. 基于多源数据产品集成分类制作的青藏高原现状植被图. 北京师范大学学报: 自然科学版, 2021, 57(6): 816-824.
[
|
[25] |
周继华, 郑元润, 宋长青, 等. 青藏高原近似复原植被图. 国家青藏高原数据中心, 2022, https://data.tpdc.ac.cn/en/data/3a49fac7-bf9d-4b69-a855-bd2380ebaa0b.
[
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
/
〈 |
|
〉 |