增长与收缩效应

精明收缩理念下的资源型城市生态安全格局修复实施路径设计——以冷水江锡矿山为例

  • 黄一凡 , 1 ,
  • 周恺 , 1 ,
  • 涂婳 2 ,
  • 戴燕归 1 ,
  • 刘化高 3
展开
  • 1.湖南大学建筑与规划学院,长沙 410082
  • 2.江西农业大学林学院,南昌 330045
  • 3.湖南省建筑设计院集团股份有限公司,城市规划研究设计院规划三分院,长沙 410011
周恺(1981- ),男,湖南长沙人,博士,副教授,博士生导师,研究方向为收缩城市与规划应对、城市与区域规划。E-mail:

黄一凡(1997- ),女,宁夏银川人,硕士,研究方向为收缩城市与规划应对。E-mail:

收稿日期: 2022-04-18

  修回日期: 2022-10-12

  网络出版日期: 2023-01-28

基金资助

国家自然科学基金项目(52078197)

The implementation of ecological security pattern restoration of resource-depleted city based on smart shrinkage principles: The case study of Xikuangshan district in Lengshuijiang

  • HUANG Yi-fan , 1 ,
  • ZHOU Kai , 1 ,
  • TU Hua 2 ,
  • DAI Yan-gui 1 ,
  • LIU Hua-gao 3
Expand
  • 1. School of Architecture and Planning, Hunan University, Changsha 410082, China
  • 2. College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
  • 3. Hunan Architectural Design Institute Group Co., LTD./Urban Planning Research and Design Institute/Third Branch of Planning Institute, Changsha 410011, China

Received date: 2022-04-18

  Revised date: 2022-10-12

  Online published: 2023-01-28

摘要

资源型城市通常面临环境恶化、景观破碎、生态流动性受阻等问题,生态系统亟需修复;同时,其作为收缩城市的重要类型之一,人口外流、经济衰退导致大量用地废弃与房屋空置,低效的用地亟需调整。以冷水江市锡矿山为例,本文将传统生态安全格局修复范式引入到收缩城市空间治理工作中,以电流密度计算结果得到的关键生态流路径和障碍点作为分期修复的依据,结合实际土地利用情况制定分区分期收缩计划,对关键障碍点进行再利用设计策略思考并检验修复效果。将生态安全格局分析和资源型城市空间收缩治理相结合,整合“生态分析—政策研究—规划设计”探索符合资源枯竭城市分步式生态修复路径,及其土地利用和空间形态分期、有序地实现精明收缩和地理设计方法。

本文引用格式

黄一凡 , 周恺 , 涂婳 , 戴燕归 , 刘化高 . 精明收缩理念下的资源型城市生态安全格局修复实施路径设计——以冷水江锡矿山为例[J]. 自然资源学报, 2023 , 38(1) : 171 -185 . DOI: 10.31497/zrzyxb.20230111

Abstract

Most resource-depleted cities face the problems of environmental degradation, landscape fragmentation, and blocked ecological mobility, in which their broken ecosystems are in urgent need for restoration. Meanwhile, resource-depleted cities are also typically shrinking cities. Under the impacts of population outflow, economic recession, and physical decay, there appeared a large quantity of abandoned lands and vacant houses, with inefficient sites in urgent need for restructuring. At the same time, these fragmented patches and corridors in the ecological system also provide opportunities for the restoration of ecological security patterns. This paper explores a GeoDesign method that combines the processes of ecological restoration and spatial governance in a shrinking city, using the case of Xikuangshan district in Lengshuijiang city. First of all, following the standard process of ecological restoration, i.e. "identifying ecological sources, constructing resistance surfaces, extracting corridors, acquiring key nodes, and constructing ecological networks", the research constructs conductance surfaces based on the InVEST model, and uses the circuit theory modeling to simulate natural ecological landscape patches. The key ecological flow paths are identified according to the strength of the current. Secondly, based on the spatial distribution of important ecological corridors and patches identified, the key obstacle points in the ecological network that need restoration are selected. Finally, a zonal phased plan is developed with reference to the existing land use, the effect of ecological restoration is tested using the afore-mentioned model, and eventually, the urban design strategy is considered for the regeneration and reuse of the abandoned lands and vacant houses on the key obstacle nodes. This research aims to bridge the analytical method of ecological restoration with the demands for spatial shrinkage of the resource-depleted city, in order to formulate a step-by-step GeoDesign method by integrating 'ecological analysis-policy study-planning design', from which the shrinking resource-depleted city is able to achieve smart shrinkage and ecological restoration.

资源型城市常出现生境斑块和廊道的破碎化,存在生态流运动困难、生态系统退化等问题,是国土空间中生态安全格局修复工作的重点。生态安全格局识别方法[1]研究已较为成熟,形成了“源地—阻力面—廊道”分析框架,并在区域[2]尺度、城市[3]尺度下进行了生态分区、生态廊道[4]和生态网络[5]修复应用。其基本工作逻辑是:首先,将重要的生态系统服务供给区域识别为生态源地[3,6-8];其次,量化不同生态单元间对景观连通度的阻力差异,界定生态阻力值[7-10];最终,得到能够传递信息和交换能量的线状或面状区域作为生态廊道[11],辨析生态流受阻程度及其空间分布特征,由此提出生态安全格局的修复建议。现有生态安全格局修复研究侧重现状分析和问题识别,对未来发展预测和实施操作引导的讨论略显不足。
同时,资源枯竭地区也常是典型的收缩城市,伴随人口外流和经济衰退出现大量土地空置和房屋废弃[12-14]。近些年,收缩城市研究也关注由土地空置与房屋废弃引发的生态流运动困难问题,主张应用“精明收缩”(Smart Shrinkage)理念主动精减城市用地以匹配更少的人口,通过资源合理退出与优化重组的方式[15],实现土地高效使用和环境可持续发展。“精明收缩”即“为更少的规划、更少的人、更少的建筑、更少的土地利用”。然而,现有的精明收缩研究大多着眼于从公共政策[16]、决策制定[17]、治理策略[18]、合理规模[19]或发展路径[20],主要聚焦于推动城市精明收缩理念的推广。
部分学者已经注意到资源型城市的精明收缩与生态安全格局修复之间的密切关联[21],试图通过分析生态环境效应、生态效率[22],引导其空间形态结构上的可持续转型。一方面,学者探讨了资源型城市土地利用、经济发展、产业转型与生态的协调关系,基于城市精明增长视角分析生态保护[23]和增长边界[24,25]、政策对生态保护的目标贡献[26]、城市空间与生态环境的协调关联[27]、评估环境效应 [28]、土地集约利用[29]等问题。另一方面,部分学者基于精明收缩理念探索生态修复路径,主张通过改变土地覆被类型实现绿色功能转换,将地块空置带来的负面问题转变为具有生态、经济和社会价值的正面机遇[30]。其涉及的研究问题涵盖了土地利用与生态系统服务的关系[31]、绿地和社会经济特征对收缩城市生态多样性的影响[32]、生态和社会学权衡[33]、闲置土地与绿色空间 [32,34]以及精明收缩下的空间结构优化[31,35]等。但是,有关如何运用技术手段解决收缩城市具体空间治理问题(如生态安全格局修复)的研究还有待深入。
基于此,本文以湖南省娄底市冷水江锡矿山为例,运用构建生态安全格局的技术手段作为精明收缩的分析工具,通过将生态安全格局分析和精明收缩理念深入到资源型城市空间形态管控规划设计中,探讨如何通过分析生境斑块和廊道的相对重要性确定空间形态优化方案,实现资源型收缩城市的分步式生态修复,使其土地利用和空间形态分期、有序地实现精明收缩。

1 研究方法与数据来源

1.1 研究区概况

冷水江市位于湖南中部,其辖区内的锡矿山街道(简称“锡矿山”,图1)曾是“世界锑都”。曾经粗放式开掘导致了锡矿山污染严重、空气质量差、土壤受损、土地荒漠化、植被退化,自然生态斑块的破碎化程度高。同时,伴随着矿产枯竭,锡矿山经济发展乏力、人口外流、城镇空间衰败问题凸显,出现了大量矿区土地闲置和旧有厂房/住房空置。2009年冷水江被国务院批准为第二批资源枯竭型城市,2013年湖南省政府将锡矿山纳入重点整治区域,2018年娄底将锡矿山区域环境综合治理作为“一号生态工程”。在生态文明发展理念下,锡矿山的矿区环境整治也成为湖南省山水林田湖草生态修复的典型案例之一。冷水江市整体北部高南部低,地貌类型多样,山地、丘陵、岗地、平原、水面兼备,锡矿山位于辖区北部山地之上。为了涵盖从山上到山下完整的生态网络联系,本文框定锡矿山、中连乡、渣渡镇三个行政区作为研究区范围(图1)。其中林地占总面积的57%,草地占总面积的9.5%,采矿用地、工业用地、城镇居住用地分别占总面积的1.2%、0.63%、1.2%。
图1 冷水江锡矿山街道区位

注:本图基于“天地图·湖南地理信息公共服务平台”下载的标准地图制作,底图无修改,下同。

Fig. 1 The location of Xikuangshan district in Lengshuijiang

1.2 数据来源

数据包括:2020年土地利用数据(10 m精度),由地理空间数据云获取的ASTER GDEM数据(30 m精度),由NASA-USGS平台获得MODIS蒸散数据、MODIS归一化植被指数产品(NDVI)、MODIS植被净初级生产力数据(NPP),由OSM获得道路路网数据、天地图卫星影像和地形图(1∶10000)。

1.3 研究方法

在资源型城市中实现生态修复和精明收缩的统一,难点在于整合生态安全格局修复、精明收缩理念以及矿区空间规划的多学科思路,实现科学与设计有效结合的空间规划方法,探索“生态分析—政策研究—规划设计”协同工作路径。借鉴Carl-Steinitz提出的地理设计“四类人、六模型、三循环”[36,37](① “四类人、六模型、三循环”框架于2012年在《地理设计框架》中提出。“四类人”明确了参与地理设计的相关人员;“六模型”指待解决问题:“表达模型”从内容、空间和时间上明确研究区域的描述方法,“运作模型”厘清要素间的结构和功能关系,“评价模型”评估运作情况,“变化模型”确定改变的具体实施方式,“影响模型”预测改变可能导致的结果,“决策模型”解答应该如何被改变。“三循环”指思维路径:从“表达模型—决策模型”自上而下顺向循环、从“决策模型—表达模型”自下而上逆向循环以及再次从“表达模型—决策模型”自上而下顺向循环的“S”型路径。),本文构建了包括“分析问题—确定方法—研究方案”三个往复循环的方法框架,从“现状表达、运作机制解析和模拟、现状评价、改变模拟和规划表达、影响评估、决策模拟”六个板块展开工作,协同“生态学、地理学、地理信息技术、城市管理、公共政策、城乡规划、景观修复、更新改造、建筑设计、本地居民、利益相关者”等多类型参与者(图2)。
图2 “四类人、六模型、三循环”技术路线

Fig. 2 Research framework of "Four types of people, six models, three cycles"

首先,本文依旧延续“识别生态源地、构建阻力面、提取廊道、获取关键节点、构建生态网络”的一般范式对锡矿山地区进行生态安全格局分析,识别障碍点以优先退出废弃用地并修复生态安全格局中的关键点。其次,本文将生态安全格局研究结果叠合现状土地闲置和房屋空置情况,依据各级障碍点的空间分布特征制定近期、中期和远期修复目标和具体修复内容。最后,利用精明收缩思维,结合现状土地、建筑物使用情况和地区产业转型进度,基于政策可行性来验证规划设计方案,以及时反馈调整,确保生态修复方案的合理性,为有序地进行生态源地保育、生态廊道修复、城市建设用地退出、潜在山水林田湖草的用地功能提升奠定基础(图2)。

1.3.1 生态源地识别

本文中的生态源地[5]指具有较高生境质量、适宜物种维持与扩散的栖息地,是生态系统服务供给的重要区域。由于锡矿山包含大量废弃空置的采矿用地、工业用地、城镇居住用地及其他污染严重的土地,生态环境恶劣;近几年,湖南省自然资源、生态环境部门采取了整治矿山、种植固碳林、治理荒废田地、污染水体和裸露山体等措施,实施山水林田湖草沙系统治理。同时,冷水江政府近期作出了锡矿山绿色转型发展、打造红色旅游与工业旅游的决策(②《长征国家文化公园(湖南段)建设保护规划建议》将冷水江纳入了长征国家文化公园(湖南段)建设范围。)。基于以上土地修复、环境治理、未来发展谋划方面的需要,本文选取“固碳释氧、生境质量、栖息地风险评估、气候调节服务和水敏感”五种生态系统服务,结合土地利用现状对生态源地进行定量评估(具体计算见表1)。
表1 生态系统服务评估方法

Table 1 Ecosystem service assessment methods

服务因子 评估方法/模型 基本原理解释 权重
土地利用现状 提取草地、林地、水体等城市绿色基础设施要素 草地、林地、水体具有较高生境质量,可以作为基本生态源地。利用ENVI监督分类解译遥感数据并修正,提取草地、林地、水体等城市绿色基础设施要素作为基本生态源地 0.30
固碳释氧 InVEST模型Carbon模块 利用地上、地下、土壤和死有机体中每个碳库的最小碳量之和来表示。碳密度相关参数参考前人研究成果[38]与InVEST模型手册确定 0.10
生境质量 InVEST模型Habitat Quality模块 以土地利用数据、每一种威胁性土地利用类型的相对影响、生境栅格与威胁因子之间的距离(表2,数据所需相关参数参考InVEST模型手册,并根据当地情况进行相应调整)、每一类生境对每一种威胁因子的相对敏感性4个因素综合评价维持生物多样性服务[11] 0.20
栖息地风险 InVEST模型的Habitat Risk Assessment
模块
通过判断生境暴露于压力源的可能性及其暴露后果,结合暴露程度与响应值去给每个压力源—生境联合体生成一个对应的风险值,量化所有压力源对生境的累积风险,辨别处于风险热点的生境区域 0.15
气候调节 城市生态智慧管理模型的气候调节(降温)模型 以生态系统蒸腾蒸发消耗的能量和植被蒸腾消耗的能量来表征气候调节服务 0.10
水敏感
城市生态智慧管理模型的水敏感模型(日常游憩) 对主要的河流、公园绿地、果园、茶园、坑塘和沟渠,以行人不同时间下的步行距离分别做缓冲区,结合水敏感模型提取不同等级的水敏感范围 0.15

③ 已有研究大多将InVEST模型应用于宏观尺度,但相关研究一直在建议将其在微观尺度下进行探索应用;考虑到模型在微观尺度下的敏感性和不确定性,首先,本文在“固碳释氧”模型中采用精度高且来源可靠的土地利用数据,提高微观尺度下估算碳储存量的计算结果精度;其次,“生境质量”模型中将锡矿山、中连乡、渣渡镇三个行政区作为研究区范围,拓展纳入分析的景观边界,减少因人工边界划定造成生境威胁被忽视的情况;最后,“栖息地风险评估”模型各类压力源及其暴露后果的信息的评分没有统一标准,本文参考已有的研究进行评分。基于以上,将InVEST模型应用在本案例中的误差在可接受范围之内。

④ 斯坦福大学NATURAL CAPITAL PROJECT的InVEST模型官方网站,https://naturalcapitalproject.stanford.edu/software/invest.

⑤ 城市生态智慧管理模型(Intelligent Urban Ecosystem Management System),https://www.iuems.ac.cn/eco/index.html.

表2 威胁因子属性表

Table 2 Attribute of threat factors

威胁因子 相对权重 最大影响距离/km 空间衰退类型
草地 0.2 2 线性
林地 0.2 1 线性
城镇建设用地 1.0 10 指数
农村居民点 1.0 8 指数
工矿用地 1.0 10 指数
农业用地 0.8 6 线性
水域 0.2 3 指数
裸地 1.0 10 指数
道路用地 0.8 6 指数
研究首先将修正后的土地利用现状图斑重分类,提取林地、草地、水体作为城市绿色基础设施的组成要素,得到研究区的基本生态源地。其次,在基本生态源地上叠加当前碳总量、生境质量评估、生境风险评估、气候调节服务、水敏感服务等因子层,参考已有研究[8]以权重0.3、0.1、0.2、0.15、0.1、0.15分别赋值,选取叠加后面积大于0.1 hm2且各类生态系统服务水平排序前30%的斑块作为最终生态源地。

1.3.2 生态阻力面设置

研究区的土地覆被状态和人为干扰程度是阻碍生态流运动与传递的主要因素。参考已有研究[39],并结合数据的可获得性,本文确定了锡矿山地区不同土地利用类型的阻力系数值(表3)。其中,使用中的城市建设用地、工业用地与采矿用地的景观阻力赋值最大;道路切割生态斑块,阻力赋值相对较大,因此对公路、城镇村道路、农村道路做多环缓冲区。由于地处山地,坡度与高程对于景观连通性也具有一定影响,利用式(1)和式(2)确定相应坡度阻力与高程阻力[40]表4)。最终,将各因子叠加到基本电导面上,得到过程电导面和最终电导面。
表3 景观类型阻力赋值

Table 3 Landscape type resistance assignment

土地利用
类型
亚类 阻力值 土地利用
类型
亚类 阻力值 土地利用
类型
亚类 阻力值
林地 竹林地 1 农业用地 水浇地 30 城镇住宅用地 正利用500
乔木林地 1 沟渠 50 废弃300
灌木林地 3 水田 50 公园与绿地 250
其他林地 5 旱地 100 设施农用地 350
草地 其他草地 5 建设用地 公用设施用地 300 采矿用地 正利用500
水体 河流水面 7 商业服务业设施
用地
废弃350
水库水面 9 科教文卫用地 工业用地 正利用500
农业用地 坑塘水面 10 机关团体新闻出版用地 废弃350
养殖坑塘 10 水工建筑用地 未利用地 裸土地 300
茶园 15 物流仓储用地 350 空闲地 250
果园 15 特殊用地 道路用地 公路用地 300
可调整果园 15 交通服务场站用地 农村道路 200
其他园地 15 农村宅基地 300 城镇村道路
用地
200
表4 地形坡度阻力赋值

Table 4 Terrain slope resistance assignment

坡度类型 坡度范围/(°) 阻力值 高程范围/m 阻力值
平坡 <5 1 222~300 1
缓坡 5~15 10 301~500 10
斜坡 15~25 30 501~700 30
陡坡 25~35 50 701~900 50
急坡 >35 100 900~997 100
R f i n a l = R i × ( 1 + α × S i )
S i = h i / l i
式中: R f i n a l是指每个栅格最终的阻力值; R i是指栅格i的阻力值; S i是指栅格i的百分比坡度(%); α是控制坡度的阻力值系数,取值为1; h i指栅格i的高; l i指栅格i的长。

1.3.3 生态廊道提取

矿山地区各类用地发挥的景观连通性作用不一,通过电路理论(⑥ “电路理论模型(Circuit Theory Model)将物种个体视为电荷,根据不同景观要素对物种迁移的阻碍程度分别赋予电阻值,将研究区视作导电表面,通过电荷在导电表面的游走类比模拟生物的迁移路径,由此获得各源地之间的电流模拟图,识别生态斑块和生态廊道,确定景观连通性的强弱。)模拟可识别区域重要生态斑块与廊道。利用Circuitscape 4.0软件,本文选用成对计算(Pairwise)模式,将所有成对斑块间的电流值合并生成逐像素的累积电流值,以此模拟研究区自然生态景观斑块间的连通性,分析廊道的相对重要性。

1.3.4 障碍点识别与清除

障碍点是物种在生境斑块间运动受到阻碍的区域[41],面积通常较小,但严重降低景观连通性,修复后可显著提升生态源地之间的连通性[42],是应该优先修复的关键区域。由于资源枯竭矿区的生境斑块和廊道已经破碎化,障碍点识别需要从大区域生态安全格局中观察生态廊道的断裂点,并预想实施生态修复可能对区域生态源地连通性显著提升的片区,以其作为生态修复的优先区[21]。同时,希望基于精明收缩制定具体的障碍点清除方案。首先,本文不仅阐明障碍点清除后锡矿山地区的功能性廊道分布特征,还基于典型障碍点的“分期收缩”安排提出节点修复再利用优化顺序。其次,研究依据重要程度划分优先级别来制定精明收缩规划,梳理、腾退废弃工矿用地和城镇居民点,并针对腾退后的土地开展相应退耕退建还林还草还湿等复绿工程。最后,运用城市更新的设计手法,探讨废弃工矿用地和建筑改造利用的可能方案。

2 结果分析

2.1 生态源地和阻力面生成

根据土地利用现状评判基本生态源地,结果高值区主要分布于锡矿山街道与渣渡镇连接的地区。该地区岭地林地资源丰富、地势平坦、污染小、距离城市较远,受到城市开发建设活动的影响更小。碳总量高值区多分布于锡矿山街道与渣渡镇连接的边缘地带、东南部和西南部的林地范围。生境质量高值区域分布在东南部山区、中部大岭山,低值区分布在人类活动集聚区。锡矿山工矿用地和其他连片建设用地生境风险大。气候调节服务高值区位于地势较为平坦的林地、草地。水敏感服务低值区大多分布在矿区范围内,以还在利用中的工矿用地为主。基于生态系统服务水平评估结果,研究区共筛选出生态源地36个,总面积30.48 km2图3)。由图3可见,锡矿山由于存在大量废弃采矿用地、工业用地和城镇居住用地,密集的生产活动和严重的污染对生态空间的干扰程度大,矿区中部形成明显低值洼地,造成了破碎的生态源地分布格局。
图3 生态源地识别

Fig. 3 Identification of ecological sources

基于坡度和高程数据重分类,叠加公路缓冲区和城镇村道路、农村道路缓冲区修正土地利用赋值的基本阻力系数,得到锡矿山地区最终生态阻力面(图4)。高阻力值地区分布于锡矿山街道中部的上述低值洼地,即矿区、锡矿山矿务局南区、中连乡居民点等,主要原因是矿区生态被侵蚀严重、坡度大,众多废弃工矿业生态破碎化明显,且人类活动集中,活动强度、范围与频次大。
图4 阻力面构建

Fig. 4 Resistance surface construction

2.2 生态廊道与障碍点的空间分布特征

基于生态源地与阻力面,利用电路理论模型识别出53条生态廊道(图5)。从生态廊道分布格局来看,连接锡矿山街道东南与渣渡镇西北的大岭山由于林地资源丰富、海拔高、坡度大、矿业和工业用地少,形成了纵横交错的密集生态廊道,发挥连通生态源地的通道作用[8]。同时,工矿用地和城镇居住用地电流值低,导致锡矿山核心区域中缺乏廊道连接,只有两条延伸的潜在生态廊道横跨锡矿山,且短而窄(图5中的廊道11、廊道12)。
图5 生态廊道相对重要性及空间走向

Fig. 5 The relative importance of ecological corridors and spatial trend

锡矿山连通性廊道的断裂点主要分布在I、II、III三处(图6图7)。I处的障碍点多是废弃空置的工矿用地和城镇建设用地,面积较广、污染较为严重、生态阻力较大,因而景观连通性有较大的提升空间。II处的障碍点原是部分废弃空置的工业厂房、居民点及沿着盘山路的长条状建设用地,对于生境的分割作用明显,修复该类型障碍点对连通性提升显著。III处的障碍点多属于次二级障碍点,主要分布在锡矿山矿务局南区及周围,是人口外流导致废弃空置的大面积居民点。
图6 近期障碍点节点修复的土地再利用效果

Fig. 6 Land reuse plan for the first phase restoration

图7 中期障碍点节点修复的土地再利用效果

Fig. 7 Land reuse plan for the second phase restoration

2.3 障碍点的分期修复和精明收缩

锡矿山地区必须在识别障碍点的基础上,考虑功能性廊道的连通性能,依据主要障碍点、次要障碍点和次二级障碍点的优先级程度实施分期收缩,逐渐加强廊道的功能性连接。同时,作为典型的资源枯竭型城市,锡矿山地区障碍点生态修复,必须包含存量和减量规划的政策实施考量,综合运用精明收缩理念进行“有序收缩”和“平滑过渡”[43],结合优先等级确定调整分期,实现在不同空间分布有序发展。
首先,近期应对位于主要障碍点上的废弃工矿用地和城镇居民点进行梳理、腾退。例如,七星社区居民委员会以东、七里江社区居民委员会以西地区连通性廊道断裂面积较大、污染严重,可考虑根据电流密度优先关系,优先将那些流失率较大、产权比较清晰的区域拆迁(图6)。同时,根据电流值大小设定不同的开发等级,限制容积率,规定绿地率,通过渐进式的退出,主动且有计划地转换形成复合型绿色基础设施网络体系,从而实现空间形态有序的逆向收缩。
其次,中期应重点关注次障碍点上的耕地、裸地及近期计划中未关注到的废弃工矿业用地和城镇居民点。其中,耕地在污染严重的矿山地区生态贡献率极低,中期生态修复过程中可以考虑对低质量耕地实施退耕还林。例如,长龙界社区居民委员会以南、锡矿山矿务局南区西部和南部,面积较广且生境分割明显,可以结合矿山地质环境修复与植被恢复,拓宽中部工矿业地区的生态廊道(图7)。同时,在分析结果中电流密度较低的区域可以有选择地建设旅游服务设施。此外,根据国土空间规划要求,中期还应当局部留白,注重生态源地边缘区管控,提供弹性发展空间,为远期工业遗产景观规划奠定基础。
最后,远期收缩主要考虑次二级障碍点。由于该部分障碍点现状还是在使用中的工矿企业,远期需要结合冷水江市政府建设地质文化镇的规划,谨慎地主动进行局部收缩,提升用地的效率。建设用地退出所获得的土地优先转换为工业遗产景观,挖掘锡矿山工业旅游潜能。例如,锌冶炼厂(图8b1~图8e1)作为曾经的龙头企业,其厂房、烟囱和管道作为时代记忆,体现了后工业遗址美学,展现出崇高感和敬畏感[44]。其在锡矿山的整体旅游规划中有着较大的更新潜力,同时作为承载了几代人采矿记忆的重要生产空间,未来可将其更新改造为集文化展览、娱乐休闲、科普探索和矿业观光为一体的工业景观公园。未来通过更新设计,可以分区设置科普体验、娱乐休闲、文化展览、儿童探险等主题场馆,结合构筑物、建筑物、展览区以及景观草坪等还原采矿冶炼的流程、体验矿业文化,科普工业生产线文化,重拾厂区记忆,利用儿童探险区和景观草坪提供多样化服务和休憩环境(图8b2~图8e2)。
图8 远期障碍点节点修复的土地再利用效果(示意)

Fig. 8 Land reuse plan for the third phase restoration (schematic)

3 结论与讨论

3.1 结论

在快速城镇化过程中,对自然资源的无序开发导致了区域生态质量的不均衡发展。构建国土空间开发保护格局需要有效维持和修复区域内生态流的正常循环过程,建立生态安全格局,持续推进生态修复,维持生态系统健康。本文以锡矿山地区为例,基于生态系统服务水平评估,通过生态源地识别、阻力面设置、生态廊道提取、障碍点识别及生态网络构建,将传统“生态网络”研究范式引入到城市生态修复治理工作中,提出国土空间生态保护与修复中生态优先区识别的方法与途径。并且,依据优先程度实施分期分区收缩,有针对性地消除或弱化生态负面效应,提升生态系统结构连通性与功能完整性,有计划地控制和调整空间要素,主动收缩且谨慎地进行生态修复并落地实践。本文希望将生态安全格局分析方法和资源枯竭矿区空间收缩研究相结合,探索符合资源枯竭矿区具体的分步式生态修复路径,以其土地利用和空间形态分期、有序地实现精明收缩和地理设计方法。

3.2 讨论

本文提出资源型城市生态安全格局修复中的精明收缩方法,将传统生态安全格局修复研究范式引入到收缩城市空间治理中,运用生态安全格局的分析技术手段作为精明收缩的空间形态管控的基础,实现科学与设计有效结合。利用地理设计“四类人、六模型、三循环”框架模型,研究提出融合“生态分析—政策研究—规划设计”的技术路线,对锡矿山地区的案例研究证明其具有可行性。
在冷水江案例研究中,对比修复障碍点前后研究区电流值的大小进行生态廊道恢复情况检验。可以发现,障碍点清除前,锡矿山地区最大电流值为424.79 A,存在的功能连通性廊道数量较少(图9a);如果顺利清除后锡矿山地区最大电流提升为463.29 A,中部新增三条功能连通性廊道,废弃空置工矿业地区结构性廊道围合的区域内部功能连通性得到改善,形成网状结构(图9b),修复这些障碍点不仅可以为研究区提供多条功能连通性廊道,也提升了生态系统抵御各种风险的能力。此外,由于考虑矿区废弃工矿用地和城镇居民点梳理和腾退工作要求、人口流失和产权情况,以及冷水江市政府建设地质文化镇的规划要求,本文提出的障碍点的分期修复和精明收缩分期方案能够与地方发展的政策需求和规划实施具有较高的贴合度。
图9 障碍点清除前后功能性廊道的变化比较

Fig. 9 Comparison of changes in functional corridors before and after barrier point removal

该方法潜在的创新性在于:在当前独立存在的精明收缩研究与生态安全格局修复之间的交叉领域,补充运用定量分析技术指导制定最合理的精明收缩和生态修复步骤。一方面,试图推动资源型城市生态安全格局修复的落地实施,通过准确制定精明收缩的分期安排,实现在不同空间有序收缩;另一方面,探索了资源型城市面临收缩时的生态安全格局修复工作思路,为资源枯竭型收缩城市计划地、系统地开展生态修复提供参考。此外,在未来研究中,还需要进一步探索如何在现有修复策略基础上整合已实施的修复工程,同步修复障碍点,提升区域整体生态状况,形成城市、乡村等人类聚落的协同耦合,实现系统修复和综合治理。
[1]
陈影, 哈凯, 贺文龙, 等. 冀西北间山盆地区景观格局变化及优化研究: 以河北省怀来县为例. 自然资源学报, 2016, 31(4): 556-569.

[CHEN Y, HA K, HE W L, et al. Study on the change and optimization of landscape pattern in the basin of Northwest Hebei Mountains: A case study of Huailai county, Hebei province. Journal of Natural Resources, 2016, 31(4): 556-569.]

[2]
张豆, 渠丽萍, 张桀滈. 基于生态供需视角的生态安全格局构建与优化: 以长三角地区为例. 生态学报, 2019, 39(20): 7525-7537.

[ZHANG D, QU L P, ZHANG J H. Ecological security pattern construction method based on the perspective of ecological supply and demand: A case study of Yangtze River Delta. Acta Ecologica Sinica, 2019, 39(20): 7525-7537.]

[3]
毛诚瑞, 代力民, 齐麟, 等. 基于生态系统服务的流域生态安全格局构建: 以辽宁省辽河流域为例. 生态学报, 2020, 40(18): 6486-6494.

[MAO C R, DAI L M, QI L, et al. Constructing ecological security pattern based on ecosystem services: A case study in Liaohe River Basin, Liaoning province, China. Acta Ecologica Sinica, 2020, 40(18): 6486-6494.]

[4]
田雅楠, 张梦晗, 许荡飞, 等. 基于“源—汇”理论的生态型市域景观生态安全格局构建. 生态学报, 2019, 39(7): 2311-2321.

[TIAN Y N, ZHANG M H, XU D F, et al. Landscape ecological security patterns in an ecological city based on source-sink theory. Acta Ecologica Sinica, 2019, 39(7): 2311-2321.]

[5]
王玉莹, 沈春竹, 金晓斌, 等. 基于MSPA和MCR模型的江苏省生态网络构建与优化. 生态科学, 2019, 38(2): 138-145.

[WANG Y Y, SHEN C Z, JIN X B, et al. Developing and optimizing ecological networks based on MSPA and MCR model. Ecological Science, 2019, 38(2): 138-145.]

[6]
王戈, 于强, YANG D, 等. 包头市层级生态网络构建方法研究. 农业机械学报, 2019, 50(9): 235-242, 207.

[WANG G, YU Q, YANG D, et al. Construction method of hierarchical ecological network in Baotou city. Transactions of the CSAM, 2019, 50(9): 235-242, 207.]

[7]
彭建, 李慧蕾, 刘焱序, 等. 雄安新区生态安全格局识别与优化策略. 地理学报, 2018, 73(4): 701-710.

DOI

[PENG J, LI H L, LIU Y X, et al. Identification and optimization of ecological security pattern in Xiong'an New Area. Acta Geographica Sinica, 2018, 73(4): 701-710.]

DOI

[8]
陈昕, 彭建, 刘焱序, 等. 基于“重要性—敏感性—连通性”框架的云浮市生态安全格局构建. 地理研究, 2017, 36(3): 471-484.

DOI

[CHEN X, PENG J, LIU Y X, et al. Constructing ecological security patterns in Yunfu city based on the framework of importance-sensitivity-connectivity. Geographical Research, 2017, 36(3): 471-484.]

DOI

[9]
彭建, 郭小楠, 胡熠娜, 等. 基于地质灾害敏感性的山地生态安全格局构建: 以云南省玉溪市为例. 应用生态学报, 2017, 28(2): 627-635.

DOI

[PENG J, GUO X N, HU Y N, et al. Constructing ecological security patterns in mountain areas based on geological disaster sensitivity: A case study in Yuxi city, Yunnan province, China. Chinese Journal of Applied Ecology, 2017, 28(2): 627-635.]

[10]
沈钦炜, 林美玲, 莫惠萍, 等. 佛山市生态网络构建及优化. 应用生态学报, 2021, 32(9): 3288-3298.

DOI

[SHEN Q W, LIN M L, MO H P, et al. Ecological network construction and optimization in Foshan city, China. Chinese Journal of Applied Ecology, 2021, 32(9): 3288-3298.]

[11]
宁琦, 朱梓铭, 覃盟琳, 等. 基于MSPA和电路理论的南宁市国土空间生态网络优化研究. 广西大学学报: 自然科学版, 2021, 46(2): 306-318.

[NING Q, ZHU Z M, QIN M L, et al. Research on the optimization of territorial space ecological network of Nanning city based on MSPA and circuit theory. Journal of Guangxi University: Natural Science Edition, 2021, 46(2): 306-318.]

[12]
MARTINEZ-FERNANDEZ C, CHUNG-TONG W U, SCHATZ L K, et al. The shrinking mining city: Urban dynamics and contested territory. International Journal of Urban and Regional Research, 2012, 36(2): 245-260.

DOI

[13]
刘合林. 收缩城市量化计算方法进展. 现代城市研究, 2016, (2): 17-22.

[LIU H L. Research on quantitative calculation method of shrinking city. Modern Urban Research, 2016, (2): 17-22.]

[14]
周恺, 钱芳芳, 严妍. 湖南省多地理尺度下的人口“收缩地图”. 地理研究, 2017, 36(2): 267-280.

DOI

[ZHOU K, QIAN F F, YAN Y. A multi-scaled analysis of the "Shrinking Map" of the population in Hunan province. Geographical Research, 2017, 36(2): 267-280.]

DOI

[15]
张俊杰, 叶杰, 刘巧珍, 等. 基于“精明收缩”理论的广州城边村空间规划对策. 规划师, 2018, 34(7): 77-85.

[ZHANG J J, YE J, LIU Q Z, et al. Smart shrinkage orientated urban fringe village planning, Guangzhou. Planners, 2018, 34(7): 77-85.]

[16]
BERNT M, HAASE A, GROMANN K, et al. How does(n't) urban shrinkage get onto the Agenda? Experiences from Leipzig, Liverpool, Genoa and Bytom. International Journal of Urban and Regional Research, 2014, 38(5): 1749-1766.

DOI

[17]
HAASE A, ATHANASOPOULOU A, RINK D. Urban shrinkage as an emerging concern for European policymaking. European Urban and Regional Studies, 2016, 23(1): 103-107.

DOI

[18]
HOSPERS G J. Policy responses to urban shrinkage: From growth thinking to civic engagement. European Planning Studies, 2014, 22(7): 1507-1523.

DOI

[19]
BÉAL V, FOL S, MIOT Y, et al. Varieties of right-sizing strategies: Comparing degrowth coalitions in French shrinking cities. Urban Geography, 2019, 40(2): 192-214.

DOI

[20]
WIECHMANN T, PALLAGST K M. Urban shrinkage in Germany and the USA: A comparison of transformation patterns and local strategies. International Journal of Urban and Regional Research, 2012, 36(2): 261-280.

PMID

[21]
DAVIES A, OLIVER B. Life within and life of a mining town: The historical geography of Western Australia's first iron ore town. Australian Geographer, 2017, 49(1): 1-16.

DOI

[22]
王国霞, 刘婷. 中部地区资源型城市城市化与生态环境动态耦合关系. 中国人口·资源与环境, 2017, 27(7): 80-88.

[WANG G X, LIU T. Coupling relationship change between urbanization and eco-environment of resource-based cities in Central China. China Population, Resources and Environment, 2017, 27(7): 80-88.]

[23]
UNDERWOOD J G, FRANCIS J, GERBER LR. Incorporating biodiversity conservation and recreational wildlife values into smart growth land use planning. Landscape and Urban Planning, 2011, 100(1): 136-143.

DOI

[24]
刘辉, 张志赟, 税伟, 等. 资源枯竭型城市增长边界划定研究: 以淮北市为例. 自然资源学报, 2017, 32(3): 391-405.

[LIU H, ZHANG Z Y, SHUI W, et al. Urban growth boundary delimitation of resource-exhausted cities: A case study of Huaibei city. Journal of Natural Resources, 2017, 32(3): 391-405.]

[25]
王振波, 张蔷, 张晓瑞, 等. 基于资源环境承载力的合肥市增长边界划定. 地理研究, 2013, 32(12): 2302-2311.

DOI

[WANG Z B, ZHANG Q, ZHANG X R, et al. Urban growth boundary delimitation of Hefei city based on the resources and environment carrying capability. Geographical Research, 2013, 32(12): 2302-2311.]

DOI

[26]
BARBOUR E, DEAKIN E A. Smart growth planning for climate protection. Journal of the American Planning Association, 2012, 78(1): 70-86.

DOI

[27]
魏璐瑶, 陈晓红. 基于精明发展的城市绩效与生态环境耦合研究: 以哈长城市群为例. 地理科学, 2017, 37(7): 1032-1039.

DOI

[WEI L Y, CHEN X H. Coupling research between urban performance and ecological environment based on smart development: A case study of Harbin-Changchun city group. Scientia Geographica Sinica, 2017, 37(7): 1032-1039.]

DOI

[28]
DEILAMI K, KAMNUZZAMAN M. Modelling the urban heat island effect of smart growth policy scenarios in Brisbane. Land Use Policy, 2017, 64: 38-55.

DOI

[29]
王振山, 张绍良, 陈浮, 等. 中国城市土地集约与生态利用协同度测度: 以31个省会城市为例. 城市问题, 2015, (11): 38-44.

[WANG Z S, ZHANG S L, CHEN F, et al. Synergy degree between urban land intensification and ecological use in China: A case study of 31 provincial capitals. Urban Problems, 2015, (11): 38-44.]

[30]
衣霄翔, 赵天宇, 吴彦锋, 等. “危机”抑或“契机”?应对收缩城市空置问题的国际经验研究. 城市规划学刊, 2020,(2): 95-101.

[YI X X, ZHAO T Y, WU Y F, et al. "Crisis" or "Opportunity"? International experiences in dealing with vacancy in shrinking cities. Urban Planning Forum, 2020, (2): 95-101.]

[31]
吴康, 李耀川. 收缩情境下城市土地利用及其生态系统服务的研究进展. 自然资源学报, 2019, 34(5): 1121-1134.

[WU K, LI Y C. Research progress of urban land use and its ecosystem services in the context of urban shrinkage. Journal of Natural Resources, 2019, 34(5): 1121-1134.]

DOI

[32]
WALKER C M, FLYNN K C, OVANDO-MONTEJO G A, et al. Does demolition improve biodiversity? Linking urban green space and socioeconomic characteristics to avian richness in a shrinking city. Urban Ecosystems, 2017, 20(6): 1191-1202.

DOI

[33]
RILEY C B, PERRY K I, ARD K, et al. Asset or liability? Ecological and sociological tradeoffs of urban spontaneous vegetation on vacant land in shrinking cities. Sustainability, 2018, 10(7): 2139.

DOI

[34]
SCHILLING J, JONATHAN L. Greening the rust belt: A green infrastructure model for right sizing America's shrinking cities. Journal of the American Planning Association, 2008, 74(4): 451-466.

DOI

[35]
王雨村, 王影影, 屠黄桔. 精明收缩理论视角下苏南乡村空间发展策略. 规划师, 2017, 33(1): 39-44.

[WANG Y C, WANG Y Y, TU H J. Southern Jiangsu village space development strategies from shrink Smart viewpoint. Planners, 2017, 33(1): 39-44.]

[36]
管雯君, 杨传勇. 自然资源部统筹下的新型地理设计思路探索. 规划师, 2018, 34(12): 68-72.

[GUAN W J, YANG C Y. New geography design under the governance of national resource bureau. Planners, 2018, 34(12): 68-72.]

[37]
马劲武. 地理设计简述: 概念、 框架及实例. 风景园林, 2013, (1): 26-32.

[MA J W. An introduction to GeoDesign: Concept, framework and practice. Landscape Architecture, 2013, (1): 26-32.]

[38]
HALMY M W. Assessing the impact of anthropogenic activities on the ecological quality of arid Mediterranean ecosystems (case study from the northwestern coast of Egypt). Ecological Indicators, 2019, 101: 992-1003.

DOI

[39]
尹海伟, 孔繁花, 祈毅, 等. 湖南省城市群生态网络构建与优化. 生态学报, 2011, 31(10): 2863-2874.

[YIN H W, KONG F H, QI Y, et al. Developing and optimizing ecological networks in urban agglomeration of Hunan province, China. Acta Ecologica Sinica, 2011, 31(10): 2863-2874.]

[40]
尹海伟, 孔繁花. 城市与区域规划空间分析实验教程(第三版). 南京: 东南大学出版社, 2018: 508.

[YIN H W, KONG F H. Experimental Tutorial on Spatial Analysis of Urban and Regional Planning (3rd ed.). Nanjing: Southeast University Press, 2018: 508.]

[41]
方莹, 王静, 黄隆杨, 等. 基于生态安全格局的国土空间生态保护修复关键区域诊断与识别: 以烟台市为例. 自然资源学报, 2020, 35(1): 190-203.

[FANG Y, WANG J, HUANG L Y, et al. Determining and identifying key areas of ecosystem preservation and restoration for territorial spatial planning based on ecological security patterns: A case study of Yantai city. Journal of Natural Resources, 2020, 35(1): 190-203.]

DOI

[42]
王回茴, 李汉廷, 谢苗苗, 等. 资源型城市工矿用地系统修复的生态安全格局构建. 自然资源学报, 2020, 35(1): 162-173.

[WANG H H, LI H T, XIE M M, et al. Construction of ecological security pattern for systematic restoration of industrial and mining land in resource-based cities. Journal of Natural Resources, 2020, 35(1): 162-173.]

DOI

[43]
周恺, 戴燕归, 涂婳. 收缩城市的形态控制: 断面模型与精明收缩的耦合框架. 国际城市规划, 2020, 35(2): 20-28.

[ZHOU K, DAI Y G, TU H. To regulate the urban form of shrinking city: A coupling framework of transect models and smart shrinkage. Urban Planning International, 2020, 35(2): 20-28.]

[44]
NYE D. American Technological Sublime. Cambridge: MIT Press, 1994: xxvi.

文章导航

/