皖江经济带土壤Cd空间分布特征与生态风险评价
周葆华(1963- ),女,安徽安庆人,教授,研究方向为生态环境调查与风险评估。E-mail: 1979748551@qq.com |
收稿日期: 2020-08-16
修回日期: 2020-11-25
网络出版日期: 2022-02-28
基金资助
安徽省科技重大专项项目(17030701057)
安徽省自然科学基金项目(1908085QD149)
安徽省高等学校自然科学研究重点项目(KJ2018A0374)
版权
Spatial distribution characteristic of Cd in soils and its ecological risk assessment in the economic belt of Yangtze River in Anhui
Received date: 2020-08-16
Revised date: 2020-11-25
Online published: 2022-02-28
Copyright
选取2.5 km×2.5 km网格布点法,在皖江经济带A、B、C三地分别采集土壤样品35个、34个、106个,利用ICP-AES分析测定Cd含量特征,运用单项污染指数法、地累积指数法和潜在生态风险指数法对三地土壤Cd污染状况进行生态风险评价。结果表明:(1)A、B、C三地土壤的Cd含量的算术平均值分别为0.40 mg∙kg -1、0.66 mg∙kg -1、0.84 mg∙kg -1,均高于江淮流域Cd含量土壤背景值;(2)三地土壤pH在5.06~7.58之间,整体上处于酸性和弱碱性之间,pH小于7.0的样品167个,占比95.43%;(3)研究区三个地块土壤Cd污染特征存在明显的空间分异,低污染区在空间上呈带状分布,高污染区在空间上呈岛状分布,污染区分布面积C地>B地>A地。(4)三地土壤环境均受重金属Cd污染的影响,存在生态安全风险,风险大小为C地>B地>A地,风险程度均为潜在生态风险高于地累积生态风险高于单项污染生态风险。本区域土壤农业安全利用需要加以重视并进行分类管控。
周葆华 , 胡睿鑫 , 赵宽 , 万昕 , 汪瑜 , 梁玉辉 , 汤金来 . 皖江经济带土壤Cd空间分布特征与生态风险评价[J]. 自然资源学报, 2021 , 36(12) : 3261 -3270 . DOI: 10.31497/zrzyxb.20211218
The numbers of 35, 34 and 106 of soil samples in the economic belt of the Yangtze River in Anhui were collected at A, B and C sampling sites by the grid points of 2.5 km× 2.5 km, respectively, the Cd content was measured by ICP-AES, and single factor pollution index, geoaccumulation index and potential ecological risk index were selected to assess the environmental risk of Cd at the three sites. The results showed that: (1) The average values of Cd content were 0.40, 0.66 and 0.84 mg∙kg -1 in soils of A, B and C sites, respectively, which were higher than the background values of Cd content in the soils of Yangtze-Huaihe river basin of Anhui. (2) The pH values of soils at the three sites were 5.06-7.58, which was between acidic and weakly alkaline. The number of samples with pH less than 7.0 was 167, accounting for 95.43% of the total number. (3) The low pollution area is distributed as a ribbon in space, while the high pollution area is distributed as an island in space of the three sites; different soil types have different pollution characteristics of Cd. (4) The assessment results were identical and presented as follows: site C > site B > site A by the single factor pollution index, the geoaccumulation index and the potential ecological risk index. In conclusion, we should focus on the safe utilization of soils and give targeted guidance to the study regions.
表1 研究区土壤重金属Cd全量的统计特征Table 1 The statistical characteristics of soil Cd content in the study area |
pH | 样品数/个 | 最大值/(mg∙kg-1) | 最小值/(mg∙kg-1) | 平均值/(mg∙kg-1) | 标准差 | 变异系数/% | |
---|---|---|---|---|---|---|---|
A | (5.5, 6.5] | 20 | 0.99 | 0.05 | 0.35 | 0.24 | 68.43 |
(6.5, 7.5] | 15 | 0.88 | 0.15 | 0.46 | 0.22 | 47.05 | |
总体情况 | 5.99~6.98 | 35 | 0.99 | 0.05 | 0.40 | 0.23 | 58.78 |
B | ≤5.5 | 5 | 1.52 | 0.14 | 0.54 | 0.56 | 104.26 |
(5.5, 6.5] | 21 | 1.25 | 0.15 | 0.61 | 0.31 | 51.73 | |
(6.5, 7.5] | 8 | 2.06 | 0.28 | 0.86 | 0.54 | 62.53 | |
总体情况 | 5.06~7.36 | 34 | 2.06 | 0.14 | 0.66 | 0.42 | 63.43 |
C | ≤5.5 | 6 | 2.31 | 0.35 | 1.07 | 0.69 | 63.92 |
(5.5, 6.5] | 56 | 6.28 | 0.10 | 0.79 | 0.95 | 120.16 | |
(6.5, 7.5] | 43 | 3.96 | 0.19 | 0.89 | 0.80 | 89.73 | |
>7.5 | 1 | 0.54 | 0.54 | 0.54 | 0 | 0 | |
总体情况 | 5.26~7.58 | 106 | 6.28 | 0.10 | 0.84 | 0.87 | 103.01 |
表2 研究区土壤Cd单项污染指数Table 2 The single pollution index of soil Cd in the study area |
区域 | pH | 样本数/个 | P值范围 | P平均值 | 样本超标数/个 (超标率/%) | |||
---|---|---|---|---|---|---|---|---|
无污染 | 轻污染 | 中度污染 | 重度污染 | |||||
A | (5.5, 6.5] | 20 | 0.11~2.48 | 0.87 | 14(70.00) | 5(25.00) | 1(5.00) | 0(0) |
(6.5, 7.5] | 15 | 0.25~1.46 | 0.77 | 12(80.00) | 3(20.00) | 0(0) | 0(0) | |
区域总体评价 | 5.99~6.98 | 35 | 0.11~2.48 | 0.82 | 26(74.28) | 8(22.86) | 1(2.86) | 0(0) |
B | ≤5.5 | 5 | 0.48~5.06 | 1.81 | 3(60.00) | 1(20.00) | 0(0) | 1(20.00) |
(5.5, 6.5] | 21 | 0.37~3.13 | 1.51 | 7(33.33) | 9(42.86) | 4(19.05) | 1(4.76) | |
(6.5, 7.5] | 8 | 0.46~3.43 | 1.43 | 3(37.50) | 4(50.00) | 0(0) | 1(12.50) | |
区域总体评价 | 5.06~7.36 | 34 | 0.37~5.06 | 1.54 | 13(38.23) | 14(41.18) | 4(11.77) | 3(8.82) |
C | ≤5.5 | 6 | 1.16~7.69 | 3.58 | 0(0) | 1(16.67) | 2(33.33) | 3(50.00) |
(5.5, 6.5] | 56 | 0.24~15.70 | 1.98 | 17(30.36) | 22(39.28) | 10(17.86) | 7(12.50) | |
(6.5, 7.5] | 43 | 0.32~6.61 | 1.48 | 24(55.81) | 6(13.95) | 10(23.26) | 3(6.98) | |
>7.5 | 1 | 0.67 | 0.67 | 1(100) | 0(0) | 0(0) | 0(0) | |
区域总体评价 | 5.26~7.58 | 106 | 0.24~15.70 | 1.85 | 42(39.62) | 29(27.36) | 22(20.76) | 13(12.26) |
表3 研究区土壤Cd地累积指数Table 3 The index of geoaccumulation of soil Cd in the study area |
区域 | pH | 样本数/个 | Igeo 范围 | Igeo 平均值 | 样本超标数/个 (超标率/%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
无污染 | 轻污染 | 偏中度污染 | 中度污染 | 偏重污染 | 重污染 | 严重污染 | |||||
A | (5.5, 6.5] | 20 | -1.79~2.67 | 0.76 | 4(20.00) | 6(30.00) | 8(40.00) | 2(10.00) | 0(0) | 0(0) | 0(0) |
(6.5, 7.5] | 15 | -0.06~2.49 | 1.41 | 1(6.67) | 3(20.00) | 8(53.33) | 3(20.00) | 0(0) | 0(0) | 0(0) | |
总体评价 | 5.99~6.98 | 35 | -1.79~2.67 | 1.35 | 5(14.29) | 9(25.71) | 16(45.71) | 5(14.29) | 0(0) | 0(0) | 0(0) |
B | ≤5.5 | 5 | -0.12~3.28 | 1.28 | 1(20.00) | 2(40.00) | 1(20.00) | 0(0) | 1(20.00) | 0(0) | 0(0) |
(5.5, 6.5] | 21 | -0.07~3.00 | 1.74 | 1(4.76) | 3(14.29) | 7(33.33) | 9(42.86) | 1(4.76) | 0(0) | 0(0) | |
(6.5, 7.5] | 8 | 0.82~3.72 | 2.25 | 0(0) | 1(12.50) | 2(25.00) | 4(50.00) | 1(12.50) | 0(0) | 0(0) | |
总体评价 | 5.06~7.36 | 34 | -0.12~3.72 | 2.07 | 2(5.88) | 6(17.65) | 10(29.41) | 13(38.24) | 3(8.82) | 0(0) | 0(0) |
C | ≤5.5 | 6 | 1.16~3.89 | 2.54 | 0(0) | 0(0) | 1(16.67) | 3(50.00) | 2(33.33) | 0(0) | 0(0) |
(5.5, 6.5] | 56 | -0.67~5.33 | 1.86 | 2(3.57) | 7(12.50) | 26(46.43) | 14(25.00) | 3(5.36) | 3(5.36) | 1(1.78) | |
(6.5, 7.5] | 43 | 0.29~4.67 | 2.10 | 0(0) | 5(11.63) | 19(44.19) | 6(13.95) | 11(25.58) | 2(4.65) | 0(0) | |
>7.5 | 1 | 1.79 | 1.79 | 0(0) | 0(0) | 1(100) | 0(0) | 0(0) | 0(0) | 0(0) | |
总体评价 | 5.26~7.58 | 106 | -0.67~5.33 | 2.43 | 2(1.89) | 12(11.32) | 47(44.34) | 23(21.70) | 16(15.09) | 5(4.72) | 1(0.94) |
表4 研究区土壤Cd潜在生态风险指数Table 4 The potential ecological risk index of soil Cd in the study area |
pH | 样本数/个 | 范围 | 平均值 | 样本超标数/个 (超标率/%) | |||||
---|---|---|---|---|---|---|---|---|---|
低 | 中等 | 中高等 | 高等 | 极高 | |||||
A | (5.5, 6.5] | 20 | 13.04~286.01 | 100.73 | 3(15.00) | 7(35.00) | 6(30.00) | 4(20.00) | 0(0) |
(6.5, 7.5] | 15 | 42.98~253.27 | 133.39 | 0(0) | 3(20.00) | 9(60.00) | 3(20.00) | 0(0) | |
总体评价 | 5.99~6.98 | 35 | 13.04~286.01 | 114.73 | 3(8.57) | 10(28.57) | 15(42.86) | 7(20.00) | 0(0) |
B | ≤5.5 | 5 | 41.48~438.39 | 156.25 | 0(0) | 3(60.00) | 1(20.00) | 0(0) | 1(20.00) |
(5.5, 6.5] | 21 | 42.94~360.69 | 174.53 | 0(0) | 3(14.29) | 7(33.33) | 9(42.86) | 2(9.52) | |
(6.5, 7.5] | 8 | 79.38~594.20 | 247.82 | 0(0) | 1(12.50) | 2(25.00) | 4(50.00) | 1(12.50) | |
总体评价 | 5.06~7.36 | 34 | 41.48~594.20 | 189.09 | 0(0) | 7(20.59) | 10(29.41) | 13(38.24) | 4(11.76) |
C | ≤5.5 | 6 | 100.33~665.25 | 309.85 | 0(0) | 0(0) | 1(16.67) | 3(50.00) | 2(33.33) |
(5.5, 6.5] | 56 | 28.21~1811.22 | 228.05 | 1(1.78) | 5(8.93) | 29(51.79) | 14(25.00) | 7(12.50) | |
(6.5, 7.5] | 43 | 55.10~1143.81 | 255.81 | 0(0) | 4(9.30) | 18(41.86) | 7(16.28) | 14(32.56) | |
>7.5 | 1 | 155.39 | 155.39 | 0(0) | 0(0) | 1(100) | 0(0) | 0(0) | |
总体评价 | 5.26~7.58 | 106 | 28.21~1811.22 | 243.26 | 1(0.94) | 9(8.49) | 49(46.23) | 24(22.64) | 23(21.70) |
[1] |
|
[2] |
吴永红, 靳少非. 基于CiteSpace的重金属污染土壤修复研究文献计量分析. 农业环境科学学报, 2020,39(3):454-461.
[
|
[3] |
|
[4] |
陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析. 农业环境科学学报, 2017,36(9):1689-1692.
[
|
[5] |
李宏薇, 尚二萍, 张红旗, 等. 耕地土壤重金属污染时空变异对比: 以黄淮海平原和长江中游及江淮地区为例. 中国环境科学, 2018,38(9):3464-3473.
[
|
[6] |
雷国建, 陈志良, 刘千钧, 等. 广州郊区土壤重金属污染程度及潜在生态危害评价. 中国环境科学, 2013,33(s1):49-53.
[
|
[7] |
陈泗进, 何立环, 王业耀. 湖南省桂阳县某铅锌矿周边农田土壤重金属污染及生态风险评价. 环境化学, 2015,34(3):591-592.
[
|
[8] |
陈卫平, 杨阳, 谢天, 等. 中国农田土壤重金属污染防治挑战与对策. 土壤学报, 2018,55(2):261-272.
[
|
[9] |
|
[10] |
许萌萌, 刘爱风, 师荣光, 等. 天津农田重金属污染特征分析及降雨沥浸影响. 环境科学, 2018,39(3):1095-1101.
[
|
[11] |
|
[12] |
殷汉琴, 陈富荣, 陈兴仁, 等. 铜陵市及其周边地区土壤重金属元素污染评价. 安全与环境学报, 2010,18(3):98-102.
[
|
[13] |
杨西飞. 铜陵矿区农田土壤及水稻的重金属污染现状研究. 合肥: 合肥工业大学, 2007.
[
|
[14] |
李法松, 韩铖, 林大松, 等. 安庆沿江湖泊及长江安庆段沉积物重金属污染特征及生态风险评价. 农业环境科学学报, 2017,36(3):574-582.
[
|
[15] |
王茜, 张光辉, 田言亮, 等. 皖江经济区基本农田地球化学特征及成因. 地质学报, 2016,90(8):1988-1997.
[
|
[16] |
赵传冬, 陈富荣, 陈兴仁, 等. 长江流域沿江镉异常源追踪与定量评估的方法技术研究: 以长江流域安徽段为例. 地学前缘, 2008,15(5):179-193.
[
|
[17] |
池源. 安徽铜陵地区土壤和河流沉积物重金属分布特征与污染评价. 南京: 南京大学, 2013.
[
|
[18] |
钟雪梅, 夏德尚, 宋波, 等. 广西土壤镉含量状况与风险评估研究进展. 自然资源学报, 2017,32(7):1256-1270.
[
|
[19] |
谢蓉蓉, 吴如林, 唐晨, 等. 互花米草入侵对河口湿地沉积物重金属累积效应. 自然资源学报, 2020,35(5):1238-1249.
[
|
[20] |
|
[21] |
吴新民, 潘根兴. 影响城市土壤重金属污染因子的关联度分析. 土壤学报, 2003,40(6):921-929.
[
|
[22] |
杨元根,
[
|
[23] |
|
[24] |
隆茜, 张经. 陆架区沉积物中重金属研究的基本方法及其应用. 海洋湖沼通报, 2002,3(3):25-35.
[
|
[25] |
|
[26] |
李宇庆, 陈玲, 仇雁翎, 等. 上海化学工业区土壤重金属元素形态分析. 生态环境, 2004,13(2):154-155.
[
|
/
〈 |
|
〉 |