陕西省县域旅游效率的空间格局及影响因素
潘秋玲(1969- ),女,新疆石河子人,博士,教授,硕士生导师,研究方向为旅游规划与管理。E-mail: xapql@163.com |
收稿日期: 2019-11-03
要求修回日期: 2020-03-23
网络出版日期: 2021-06-28
基金资助
陕西省社会科学基金项目(2017D012)
西安外国语大学研究生科研基金项目(SSYB2019084)
版权
The spatial pattern and influencing factors of county-scale tourism efficiency in Shaanxi province
Received date: 2019-11-03
Request revised date: 2020-03-23
Online published: 2021-06-28
Copyright
提质增效是目前旅游产业发展面临的重要课题。基于数据包络分析法,选用Python爬取技术,对陕西省107个县域的旅游效率进行测度分析,探讨县域旅游效率的空间格局及其影响的主要因素。研究表明:(1)陕西省旅游效率达到有效的县域数量整体偏低,高旅游效率县域多集中于市辖郊县。(2)县域旅游效率分布不均衡。陕北地区高旅游效率县域主要集中在黄河沿岸,关中地区呈现“西高东低”的现象,陕南地区高旅游效率县域则集中在地市交界处。(3)影响县域旅游总效率、技术效率和规模效率的主导因素不同。旅游收入占GDP比例(反映旅游业水平)、人口密度(反映县域发展水平)及汽车站数量(反映交通服务水平)是影响陕西省县域旅游总效率及技术效率的主导因素,而旅游资源禀赋(反映旅游业水平)、人口密度(反映县域发展水平)则是影响陕西省县域旅游规模效率的主导因素。
关键词: 旅游效率; 数据包络分析(DEA); 空间格局; 陕西省县域
潘秋玲 , 宋玉强 , 陈乐 , 潘志奎 . 陕西省县域旅游效率的空间格局及影响因素[J]. 自然资源学报, 2021 , 36(4) : 866 -878 . DOI: 10.31497/zrzyxb.20210405
The development of tourism in China in the last four decades builds China into the ranks of the world's tourism powers. At present, the tourism industry is facing an important task of improving the quality and efficiency in the critical period of transformation and development. Recent research efforts have noted the neglect of regional tourism efficiency studies at county scale. Little research has been done on the county-scale tourism efficiency in Northwest China. To expand our understanding of this topic, this paper focuses on the contributions of the spatial pattern and influencing factors on the tourism efficiency of counties. In this paper, the tourism efficiency and spatial pattern of 107 counties in Shaanxi province was measured based on data envelopment analysis and Python crawling technique. The results showed the following: (1) The number of counties in Shaanxi that have reached the effective overall tourism efficiency was relatively small. The counties with high tourism efficiency were mostly suburban counties. In terms of decomposition, the scale efficiency of county-level tourism in the province was generally higher than that of technical efficiency, which suggests that most counties in Shaanxi were still focusing on large-scale investment in tourism development, but neglect to enhance the capacity of conversing resources. (2) From the analysis of the three geographical units of Shaanxi, the counties with high tourism efficiency in the north area of Shaanxi were mainly concentrated along the Yellow River. Guanzhong area presents the spatial layout of "high in the west and low in the east part", as the counties reaching effective tourism efficiency mainly concentrated along the Longxian-Jingyang-Tongguan county axis. The counties with high tourism efficiency in southern Shaanxi are mostly located at the junction of prefectures and cities. Meanwhile, some counties in the west of Hanzhong bordering neighbor province achieved high tourism efficiency. (3) In the analysis of factors affecting tourism efficiency, the proportion of tourism income to GDP, population density and number of bus stations directly affected tourism overall efficiency and technical efficiency. Tourism resource endowment and population density were the main factors influencing the scale efficiency of county tourism. In addition, the density of highways had a significant influence on it as well. Finally, combined with the research results, this paper provides countermeasures and suggestions for the development of county-level tourism in Shaanxi: optimizing resource allocation and accelerating technological innovation in the region, propelling the differentiated development of tourism and highlighting the tourism characteristics of each county, strengthening exchanges and cooperation between counties and promoting the integration of tourism, culture and other related industries.
表1 陕西省县域旅游投入—产出原始数据描述性统计Table 1 Descriptive statistics of input and output raw data of county-scale tourism efficiency in Shaanxi province |
指标属性 | 具体指标 | 最大值 | 最小值 | 均值 | 标准差 |
---|---|---|---|---|---|
投入 | 全社会固定资产投资/亿元 | 1061.91 | 9.46 | 197.24 | 184.50 |
旅行社数量/个 | 233.00 | 1.00 | 18.77 | 38.07 | |
旅游资源吸引力/分 | 1765.00 | 75.00 | 297.80 | 238.30 | |
星级酒店数量/个 | 706.00 | 1.00 | 54.00 | 121.52 | |
产出 | 旅游收入/亿元 | 554.30 | 0.95 | 39.75 | 64.52 |
景区加权口碑/分 | 1135.50 | 247.50 | 545.61 | 211.10 |
表2 陕西省县域旅游总效率与影响因素的回归结果Table 2 Regression results of tourism efficiency and influencing factors at county-scale in Shaanxi province |
一级指标 | 二级指标 | (1) | (2) | (3) |
---|---|---|---|---|
旅游业水平 | 旅游收入占GDP比例 | 0.429*** (3.25) | 0.404*** (2.95) | 0.376*** (2.70) |
旅游资源禀赋 | 0.009 (0.78) | 0.007 (0.60) | 0.006 (0.53) | |
县域发展水平 | 人均GDP | -0.036 (-0.72) | -0.032 (-0.65) | |
人口密度 | 0.179** (2.47) | 0.191** (2.52) | ||
交通服务水平 | 汽车站数量 | 0.028* (1.71) | ||
高速公路密度 | 0.081 (0.27) | |||
是否有高铁站 | -0.119 (-1.28) | |||
虚拟变量 | 是否在市辖区 | -0.072 (-1.18) | -0.106 (-1.61) | -0.092 (-1.26) |
样本量 | 107 | 107 | 107 | |
调整后R2 | 0.144 | 0.193 | 0.231 |
注:括号内为t值;*、**、***分别表示在10%、5%、1%的水平上显著,下同。 |
表3 陕西省县域旅游技术效率、规模效率与影响因素的回归结果Table 3 Regression result of technical efficiency, scale efficiency and influencing factors of county-scale tourism in Shaanxi province |
一级指标 | 二级指标 | 技术效率 | 规模效率 | |||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |||
旅游业 水平 | 旅游收入占 GDP比例 | 0.423*** (3.53) | 0.405*** (3.25) | 0.374*** (2.93) | 0.081 (1.37) | 0.048 (0.77) | 0.050 (0.79) | |
旅游资源禀赋 | 0.004 (0.37) | 0.002 (0.19) | 0.001 (0.10) | 0.010* (1.81) | 0.010* (1.80) | 0.010* (1.80) | ||
县域发 展水平 | 人均GDP | -0.027 (-0.58) | -0.025 (-0.54) | -0.041* (-1.79) | -0.037 (-1.65) | |||
人口密度 | 0.151** (2.27) | 0.162** (2.34) | 0.066** (2.01) | 0.071** (2.07) | ||||
交通服 务水平 | 汽车站数量 | 0.025* (1.70) | 0.008 (1.14) | |||||
高速公路密度 | -0.034 (-0.12) | 0.202 (1.48) | ||||||
是否有高铁站 | -0.080 (-0.95) | -0.069 (-1.64) | ||||||
虚拟 变量 | 是否在 市辖区 | -0.070 (-1.25) | -0.100 (-1.66) | -0.086 (-1.29) | -0.001 (-0.05) | -0.001 (-0.04) | -0.001 (-0.04) | |
样本量 | 107 | 107 | 107 | 107 | 107 | 107 | ||
调整后R2 | 0.154 | 0.196 | 0.228 | 0.069 | 0.120 | 0.166 |
[1] |
|
[2] |
方叶林, 黄震方, 王坤, 等. 中国星级酒店相对效率集聚的空间分析及提升策略. 人文地理, 2013,28(1):121-127.
[
|
[3] |
彭建军, 陈浩. 基于DEA的星级酒店效率研究: 以北京、上海、广东相对效率分析为例. 旅游学刊, 2004,19(2):59-62.
[
|
[4] |
|
[5] |
|
[6] |
张琰飞. 基于DEA-Malmquist模型的中国星级饭店经营效率时空演化研究. 地理科学, 2017,37(3):406-415.
[
|
[7] |
胡宇娜, 梅林, 魏建国. 基于GWR模型的中国区域旅行社业效率空间分异及动力机制分析. 地理科学, 2018,38(1):107-113.
[
|
[8] |
|
[9] |
|
[10] |
曹芳东, 黄震方, 余凤龙, 等. 国家级风景名胜区旅游效率空间格局动态演化及其驱动机制. 地理研究, 2014,33(6):1151-1166.
[
|
[11] |
王兆峰, 刘庆芳. 长江经济带旅游生态效率时空演变及其与旅游经济互动响应. 自然资源学报, 2019,34(9):1945-1961.
[
|
[12] |
查建平, 王挺之. 环境约束条件下景区旅游效率与旅游生产率评估. 中国人口·资源与环境, 2015,25(5):92-99.
[
|
[13] |
王兆峰, 杨显. 基于DEA-Malmquist模型的中部城市群旅游产业效率评价研究. 旅游科学, 2018,32(3):27-38.
[
|
[14] |
魏俊, 胡静, 朱磊, 等. 鄂皖两省旅游发展效率时空演化及影响机理. 经济地理, 2018,38(8):187-195.
[
|
[15] |
方叶林, 黄震方, 李东和, 等. 中国省域旅游业发展效率测度及其时空演化. 经济地理, 2015,35(8):189-195.
[
|
[16] |
邓洪波, 陆林. 基于DEA模型的安徽省城市旅游效率研究. 自然资源学报, 2014,29(2):313-323.
[
|
[17] |
马晓龙, 保继刚. 中国主要城市旅游效率的区域差异与空间格局. 人文地理, 2010,25(1):105-110, 99.
[
|
[18] |
|
[19] |
魏权龄. 评价相对有效性的DEA方法: 运筹学的新领域, 北京: 中国人民大学出版社, 1988: 1-8.
[
|
[20] |
|
[21] |
马晓龙, 保继刚. 中国主要城市旅游效率影响因素的演化. 经济地理, 2009,29(7):1203-1208.
[
|
[22] |
马晓龙, 金远亮. 张家界城市旅游发展的效率特征与演进模式. 旅游学刊, 2015,30(2):24-32.
[
|
[23] |
陶卓民, 薛献伟, 管晶晶. 基于数据包络分析的中国旅游业发展效率特征. 地理学报, 2010,65(8):1004-1012.
[
|
[24] |
王坤, 黄震方, 陶玉国, 等. 区域城市旅游效率的空间特征及溢出效应分析: 以长三角为例. 经济地理, 2013,33(4):161-167.
[
|
[25] |
游诗咏, 林仲源, 韩兆洲. 广东省城市旅游效率的时空特征及其增长机制. 资源科学, 2017,39(8):1545-1559.
[
|
[26] |
梁明珠, 易婷婷,
[
|
[27] |
梁明珠, 易婷婷. 广东省城市旅游效率评价与区域差异研究. 经济地理, 2012,32(10):158-164.
[
|
[28] |
时雨晴, 虞虎, 陈田, 等. 城市旅游效率演化阶段、特征及其空间分异效应: 以海南国际旅游岛为例. 经济地理, 2015,35(10):202-209.
[
|
[29] |
徐冬, 黄震方, 胡小海, 等. 浙江省县域旅游效率空间格局演变及其影响因素. 经济地理, 2018,38(5):197-207.
[
|
[30] |
王坤, 黄震方, 曹芳东, 等. 泛长江三角洲城市旅游绩效空间格局演变及其影响因素. 自然资源学报, 2016,31(7):1149-1163.
[
|
[31] |
马晓龙. 国内外旅游效率研究进展与趋势综述. 人文地理, 2012,27(3):11-17.
[
|
[32] |
杨晓俊, 潘秋玲. “关中—天水经济区”旅行社业发展现状及对策研究. 开发研究, 2012, (4):55-58.
[
|
[33] |
赖胜强, 唐雪梅, 朱敏. 网络口碑对游客旅游目的地选择的影响研究. 管理评论, 2011,23(6):68-75.
[
|
/
〈 |
|
〉 |