重大技术变革与能源地缘政治转型
崔守军(1978- ),男,山东淄博人,博士,教授,博士生导师,研究方向为中国外交、能源地缘政治、中国与发展中国家关系、国际组织等。E-mail: cuishoujun@ruc.edu.cn |
收稿日期: 2020-02-01
要求修回日期: 2020-09-09
网络出版日期: 2021-01-28
基金资助
国家社会科学基金项目(19BGJ061)
版权
Critical technology change and energy geopolitics transition
Received date: 2020-02-01
Request revised date: 2020-09-09
Online published: 2021-01-28
Copyright
技术进步是能源地缘政治演进的物质基础,重大技术变革驱动能源利用形式的迭代升级。从能源转型的历史与现实出发,初步建立技术变革与地缘政治研究的理论分析框架。重大技术变革是推动能源转型的动力,而能源转型引发能源供需关系的改变,进而催生新的能源地缘政治格局。技术变革是能源地缘政治博弈的焦点。随着第四次工业革命的到来,在地理变量维度中稀土、钴、锂等能源关键元素成为大国争夺核心,而在科技变量维度中颠覆性能源技术则成为引领能源产业变革的关键。技术竞争、新供需关系与新地缘关系一同重塑了新能源地缘政治格局。新能源技术的发展对能源安全产生重大影响,一方面能源大国的博弈格局发生变化,能源外交的运用方式随之改变;另一方面与油气相关的地缘冲突将趋于减少,但电力断供将成为地缘政治博弈的新武器。
崔守军 , 蔡宇 , 姜墨骞 . 重大技术变革与能源地缘政治转型[J]. 自然资源学报, 2020 , 35(11) : 2585 -2595 . DOI: 10.31497/zrzyxb.20201103
Technology change is the material foundation of energy geopolitics transition. Different from the traditional view that "energy politics is equal to resource politics", this article argues that resource endowment and technology breakthrough are equally important in determining energy geopolitics dynamics. Energy technology can be divided into two categories, namely competence-enhancing technology and competence-destroying technology. For example, shale oil and shale gas extraction technology belongs to the first category and renewable energy technology belongs to the second, while the breakthrough in renewable energy technology will significantly reconstruct global energy structure. Tracing the history of technological transition, the dominant energy resource evolved from wood to coal, to oil and gas and then to renewables. The energy technology innovation cycles are closely intertwined with great powers' geopolitical competition, while major technology shift triggers the upgrade of energy utilization. The technology leading state could always exert its geopolitical advantages in each energy transition process, and the success of challenging state in replacing hegemonic state is always being supported by new energy technology innovation. With the arrival of the fourth industrial revolution, renewable energies, such as wind power, solar power and controllable nuclear fusion will substantively transform and reshape global energy geopolitics. Currently, two geopolitical consequences in new energy transition could be observed. (1) Accessibility and availability to critical elements, especially the rare earth, cobalt and lithium in renewable energy sector, will become the new battle fields of energy geopolitics. (2) Disruptive technology will be the linchpin in leading energy industry upgradation. Global powers such as China, US and EU have set up their roadmaps in promoting renewable energy development. Geopolitical competition among great powers will accelerate the evolution of the present round of energy transition. The progress of new energy technology will substantively affect energy security. On the one hand, the structure of major powers game and the implementation of energy diplomacy will largely differ from the past. On the other hand, the oil and gas related geopolitical conflicts will be largely decreased. In the meanwhile, the cut-off of grids will be a new weapon in global geopolitical game.
[1] |
|
[2] |
吴磊, 曹峰毓. 论世界能源体系的双重变革与中国的能源转型. 太平洋学报, 2019,27(3):37-49.
[
|
[3] |
张有生, 苏铭, 杨光, 等. 世界能源转型发展及对我国的启示. 宏观经济管理, 2015,25(12):37-39.
[
|
[4] |
刘昱阳. 我国稀土资源在地缘经济中的技术困境: 基于稀土产业相关专利全球分布的视角. 资源信息与工程, 2020,35(1):142-151.
[
|
[5] |
邹才能, 赵群, 张国生, 等. 能源革命:从化石能源到新能源. 天然气工业, 2016,36(1):1-10.
[
|
[6] |
张锐. 拉美能源一体化的发展困境: 以电力一体化为例. 拉丁美洲研究, 2018,40(6):109-123.
[
|
[7] |
余家豪. 全球新能源转型带来的地缘政治风险. 能源, 2019,8(3):90-91.
[
|
[8] |
|
[9] |
黄琪轩. 大国权力转移与技术变迁. 上海: 上海交通大学出版社, 2013: 1-7.
[
|
[10] |
|
[11] |
张仕荣. 世界能源技术的三次革命与中国国际地位的变迁. 内蒙古大学学报, 2008,40(2):80-85.
[
|
[12] |
The Global Commission on the Geopolitics of Energy Transformation. A New World: The Geopolitics of the Energy Transformation. http://www.geopoliticsofrenewables.org, 2019-01/2020-05-01.
|
[13] |
International Renewable Energy Agency. Renewable power generation costs in 2017. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Jan/IRENA_2017_Power_Costs_2018_summary.pdf?la=en&hash=6A74B8D3F7931DEF00AB88BD3B339CAE180D11C3, 2018-01/2020-05-01.
|
[14] |
International Energy Agency. Renewables 2018: Analysis and forecasts to 2023, Executive Summary. https://www. iea.org/reports/renewables-2018, 2018-10/2020-05-01.
|
[15] |
|
[16] |
沈镭, 钟帅, 胡纾涵. 新时代中国自然资源研究的机遇与挑战. 自然资源学报, 2020,35(8):1773-1788.
[
|
[17] |
沈镭, 张红丽, 钟帅, 等. 新时代下自然资源安全的战略思考. 自然资源学报, 2018,33(5):721-734.
[
|
[18] |
United States Geological Survey. Rare earth statistics and information. 2019-02/2020-05-01.
|
[19] |
余玮. 徐光宪: 举重若重的“稀土之父”. 人民日报海外版, 2009-12-30(07).
[
|
[20] |
|
[21] |
U.S. Government Accountability Office. Rare earth materials in the defense supply chain. https://www.usgs.gov/centers/nmic/rare-earths-statistics-and-information, 2010-04-14/2019-12-24.
|
[22] |
|
[23] |
U. S. Geological Survey. Mineral commodity summaries. https://www.usgs.gov/centers/nmic/cobalt-statistics-and-information, 2019-02/2020-05-01.
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
International Renewable Energy Agency. Hydrogen: A Renewable Energy Perspective. https://www.irena.org/publications/2019/Sep/Hydrogen-A-renewable-energy-perspective, 2019-09/2020-06.
|
[29] |
杜明俐. 紧握战略机遇, 向创新谋突破: 就推动电力行业科技创新专访国家能源局科技司负责人. 中国电业, 2018,2(10):6-9.
[
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
United States Department of the Navy, Energy Program for Security and Independence. https://navysustainablity.dodlive.mil/files/2010/04/Naval_Energy_Strategic_Roadmap_100710.pdf, 2010-10/2020-5-2.
|
[35] |
North Atlantic Treaty Organization. NATO green defense framework. http://www.natolibguides.info/ld.php?content_id=25285072, 2015-02-14/2020-05-01.
|
/
〈 |
|
〉 |