
中国城市水资源短缺类型与发展轨迹识别——以32个主要城市为例
赵孝威, 张洪波, 李同方, 冶兆霞, 薛超伟, 张雨柔, 杨志芳
自然资源学报 ›› 2023, Vol. 38 ›› Issue (10) : 2619-2636.
中国城市水资源短缺类型与发展轨迹识别——以32个主要城市为例
Types identification and development tracking of urban water scarcity in China: A case study of 32 major cities
基于主成分分析法和组基多轨迹模型,对中国32个主要城市进行了水资源短缺程度评价与缺水类型识别,并探究了城市缺水类型转化以及水资源管理风险问题。研究表明:(1)中国城市的水资源短缺程度具有明显的空间分异性,主要表现为由东南向西北逐渐加深,缺水城市以北方城市为主。(2)西北片区城市以资源—工程型缺水为主导,华北与东北片区大部分属于资源型和管理型缺水,南方城市多表现为工程型和水质型缺水。(3)缺水越严重的地区,城市缺水问题亦越复杂,且驱动因素具有时变性,城市扩张和GDP增长的交织影响常引发城市缺水类型或主导位置的转换,甚至导致城市缺水风险实质性化。(4)城市规模越大、GDP总量越高,越易出现管理型缺水问题。
This study creates an evaluation index system for the degree of urban water scarcity based on the results of previous research and uses principal component analysis (PCA) to assess the level of water scarcity in 32 major cities in China from 2011 to 2020. The types and distribution characteristics of water scarcity are identified, along with the dominant physical meaning of the principal components, using the group-based multi-trajectory modeling (GBMTM) method. In addition, the types of scarcity and the potential risks of managing water resources during the process of urban expansion are discussed. The results showed that: (1) Significant regional variability exists in the water resource deficit, as demonstrated by the fact that it worsens gradually from the southeast to the northwest and is constrained by resource endowment. There, most cities with water scarcity are distributed in Northern China. (2) Resource-engineering coupling-constrained water scarcity is prevalent in major cities of Northwest China, resource-constrained and management-constrained water scarcity is prevalent in most parts of North and Northeast China; engineering-constrained and water-quality-constrained water scarcity is prevalent in many cities of Southern China. (3) The complexity of the urban water scarcity problem increases with the severity of the water deficit. Also, the motivating factors change over time. For instance, the intertwined impact of urban growth and GDP growth frequently results in the conversion of urban water scarcity types or the dominant position and can even cause the risk of urban water scarcity to materialize. (4) The likelihood of management-constrained water scarcity increases with the increase of city size and GDP. Also, the pace at which management-constrained water scarcity contributes to urban development is proportionate. The study also discovered that the GBMTM model can accurately distinguish separate clusters from various development trajectories. It can be utilized as a crucial tool for tracking the evolution of dynamic data in hydrology and water resources fields.
水资源短缺 / 主要城市 / 主成分分析 / 组基多轨迹建模 / 类型识别 / 发展轨迹 {{custom_keyword}} /
water scarcity / major cities / principal component analysis / group-based multi-trajectory modeling / type identification / development trajectory {{custom_keyword}} /
表1 城市水资源短缺程度评价指标体系Table 1 Evaluation index system of urban water scarcity |
目标层A | 准则层B | 指标层C | 计算公式 | 量纲 | 指标来源 |
---|---|---|---|---|---|
城市水资源短缺程度评价/A | 水资源量/B1 | 降水量/C1(-) | 查阅资料 | m3/人 | [39] |
产水模数/C2(-) | 水资源总量/土地面积 | 万m3/km2 | [39] | ||
径流系数/C3(-) | 径流量/降水量 | — | [40] | ||
产水系数/C4(-) | 水资源总量/降水总量 | — | [40] | ||
社会经济状况/B2 | 人口密度/C5(+) | 总人口/土地面积 | 人/km2 | [40] | |
GDP模数/C6(+) | GDP/土地面积 | 万元/km2 | [41] | ||
城镇化率/C7(+) | 城镇人口/总人口 | % | [10] | ||
供用水情况/B3 | 人均供水量/C8(-) | 供水总量/总人口 | m3/人 | [41] | |
供水模数/C9(-) | 供水总量/土地面积 | 万m3/km2 | [41] | ||
地下水供水比重/C10(+) | 地下水供水量/供水总量 | % | [40] | ||
万元GDP用水量/C11(+) | 用水总量/GDP | m3/万元 | [39] | ||
万元工业增加值用水量/C12(+) | 工业用水量/工业增加值 | m3/万元 | [10] | ||
水环境状况/B4 | 污水处理能力/C13(-) | 查阅资料 | m3/天 | [10] | |
人均工业废水排放量/C14(+) | 工业废水排放总量/总人口 | t/人 | [42] |
注:表中牵涉到的人口指标均为常住人口;指标层中,(+)表示正向指标,(-)表示负向指标。 |
表2 2011年主成分提取分析表Table 2 Principal component extraction analysis in 2011 |
成分 | 初始特征值 | 提取平方和载入 | |||||
---|---|---|---|---|---|---|---|
特征值 | 贡献率/% | 累计贡献率/% | 特征值 | 贡献率/% | 累计贡献率/% | ||
1 | 5.649 | 40.349 | 40.349 | 5.649 | 40.349 | 40.349 | |
2 | 3.354 | 23.959 | 64.307 | 3.354 | 23.959 | 64.307 | |
3 | 1.948 | 13.917 | 78.224 | 1.948 | 13.917 | 78.224 | |
4 | 1.113 | 7.950 | 86.174 | 1.113 | 7.950 | 86.174 | |
5 | 0.538 | 3.843 | 90.017 | ||||
6 | 0.418 | 2.985 | 93.003 | ||||
7 | 0.374 | 2.672 | 95.674 | ||||
… | … | … | … | ||||
12 | 0.026 | 0.186 | 99.842 | ||||
13 | 0.014 | 0.098 | 99.940 | ||||
14 | 0.008 | 0.060 | 100.000 |
表3 32个主要城市2011—2020年水资源短缺程度评分均值Table 3 Water scarcity degree scoring average of 32 major cities in 2011-2020 |
城市 | F | 排名 | 城市 | F | 排名 | 城市 | F | 排名 |
---|---|---|---|---|---|---|---|---|
呼和浩特 | 1.79 | 1 | 长春 | 1.10 | 12 | 成都 | -1.13 | 23 |
太原 | 1.62 | 2 | 西安 | 0.86 | 13 | 长沙 | -1.14 | 24 |
银川 | 1.56 | 3 | 西宁 | 0.74 | 14 | 重庆 | -1.18 | 25 |
兰州 | 1.42 | 4 | 大连 | 0.63 | 15 | 宁波 | -1.25 | 26 |
沈阳 | 1.38 | 5 | 昆明 | 0.39 | 16 | 福州 | -1.41 | 27 |
青岛 | 1.33 | 6 | 合肥 | -0.15 | 17 | 杭州 | -1.48 | 28 |
郑州 | 1.31 | 7 | 南京 | -0.60 | 18 | 上海 | -1.54 | 29 |
乌鲁木齐 | 1.20 | 8 | 厦门 | -0.60 | 19 | 南昌 | -1.80 | 30 |
北京 | 1.17 | 9 | 贵阳 | -0.72 | 20 | 深圳 | -2.04 | 31 |
济南 | 1.11 | 10 | 南宁 | -0.73 | 21 | 广州 | -2.20 | 32 |
天津 | 1.10 | 11 | 武汉 | -0.73 | 22 |
注:F表示各市10年的评分均值,F值越大,表示城市缺水程度越高。 |
表4 模型分组结果准确度检验Table 4 Accuracy test of model grouping results |
组别 | AvePP | Pj/% | | 相对误差/% |
---|---|---|---|---|
组1 | 1 | 12.500 | 12.494 | -0.048 |
组2 | 0.999 | 6.250 | 6.247 | -0.048 |
组3 | 0.999 | 9.375 | 9.375 | 0.000 |
组4 | 1 | 21.875 | 21.863 | -0.055 |
组5 | 0.999 | 9.375 | 9.379 | 0.043 |
组6 | 1 | 6.250 | 6.253 | 0.048 |
组7 | 1 | 6.250 | 6.253 | 0.048 |
组8 | 0.998 | 25.000 | 25.011 | 0.044 |
组9 | 1 | 3.125 | 3.125 | 0.000 |
图9 降水+城市规模对城市水资源短缺类型的影响注:图中工程—水质型*表示工程—水质复合型水资源短缺风险,下同。Fig. 9 Impact of precipitation and city size on urban water scarcity type |
图10 降水+GDP对城市水资源短缺类型的影响Fig. 10 Impact of precipitation and GDP on urban water scarcity type |
图11 城市规模+GDP对城市水资源短缺类型的影响Fig. 11 Impact of city size and GDP on urban water scarcity type |
表5 城市规模分类标准及涵盖城市Table 5 Classification standard of city size and the corresponding cities |
城市规模 | 城区常住人口/万人 | GDP总量/万亿元 | 涵盖城市 | 计数/个 |
---|---|---|---|---|
Ⅱ型大城市 | 100~300 | 0~0.2 | 西宁、银川 | 2 |
0.2~0.4 | 兰州、呼和浩特 | 2 | ||
Ⅰ型大城市 | 300~500 | 0.2~0.4 | 乌鲁木齐 | 1 |
0.4~0.6 | 贵阳、南宁、南昌、厦门、太原 | 5 | ||
0.6~1.0 | 长春、福州、合肥 | 3 | ||
1.0~1.5 | 宁波 | 1 | ||
特大城市 | 500~1000 | 0.6~1.0 | 西安、济南、沈阳、昆明、大连 | 5 |
1.0~1.5 | 郑州、青岛、南京、长沙 | 4 | ||
1.5~2.5 | 杭州、武汉 | 2 | ||
超大城市 | >1000 | 1.0~1.5 | 天津 | 1 |
1.5~2.5 | 广州、重庆、成都 | 3 | ||
>2.5 | 北京、上海、深圳 | 3 |
[1] |
孙才志, 魏亚琼, 赵良仕. 干旱区水—能源—粮食纽带系统协同演化: 以中国西北地区为例. 自然资源学报, 2022, 37(2): 320-333.
水、能源、粮食是人类社会发展的基本保障,三者之间的紧密联系成为近年来国内外学者关注的重点。通过对水—能源—粮食纽带系统协同演化机制的探究,能更好地厘清三者之间的相互关系,对实现社会高质量发展具有重要意义。基于自组织理论,从水、能源、粮食三个角度构建理论模型,运用哈肯模型分阶段地对中国西北地区水—能源—粮食纽带系统协同发展的演化机制进行探究,并在此基础上分析水—能源—粮食纽带系统协同得分的时空分异规律。结果表明:(1)2000—2010年间,中国西北地区水—能源—粮食纽带系统协同演化的序参量是水资源子系统,其主导着整个系统的演化方向,而能源子系统、粮食子系统处于从属地位。在协同得分的时空变化规律上,西北五省区协同得分整体呈上升趋势,但各地区得分差距较大。(2)2011—2018年间,中国西北地区水—能源—粮食纽带系统协同演化的序参量是水资源子系统和能源子系统,两者共同主导着水—能源—粮食纽带系统的协同演化,粮食子系统则处于从属地位。在协同得分的时空变化规律上,西北五省区协同得分仍保持平稳上升趋势,省际间得分差距明显缩小。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
韩雁, 贾绍凤, 鲁春霞, 等. 水资源与社会经济发展要素时空匹配特征: 以张家口为例. 自然资源学报, 2020, 35(6): 1392-1401.
水资源短缺已成为制约区域经济社会发展的重要因素,协调水资源与社会经济关系是水资源可持续利用的关键。以张家口为例,采用洛伦兹基尼系数和不均衡指数模型对水资源与社会经济发展要素的时空匹配特征进行研究,结果表明:2004—2015年张家口水资源与人口、耕地面积分布处于“匹配比较合理”和“相对匹配”状态,水资源与经济布局匹配呈现出由“完全不匹配”状态逐渐转变为“相对不匹配”状态。在空间匹配演化方面,水资源与人口、耕地面积的匹配度变化不大。水资源与经济匹配结果表明在水资源禀赋越差的地区,经济增速越快,水资源与经济的空间匹配状况越差。张家口水资源与社会经济发展要素时空匹配特征研究,对于指导区域水资源合理开发利用具有重要的现实意义。
[
Water shortage has been become a vital restricted factor for developing of regional socio-economy. It is critical to harmonize the relationship between water exploitation and socio-economic development so as to achieve sustainable utilization of water resources. In this paper, we take Zhangjiakou as a case study, and adopt the Lorenz Gini coefficient method and imbalance index model to examine the spatiotemporal matching between water resources and socio-economy. The results indicate that the match status between water resources and population, and between water resources and farmland, were reasonable and relatively reasonable respectively from 2004 to 2015. The match status between water resources and economy was changing from complete to relative mismatch. In terms of spatial matching, there was little change of matching between water and population, and between water and farmland. The less water resources there are in a region, the faster economic development is, and the worse the matching between water and economy. This study is important for the development and utilization of water resources in the study area.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
丁超, 胡永江, 王振华, 等. 虚拟水社会循环视域下的水资源承载力评价. 自然资源学报, 2021, 36(2): 356-371.
[
The shortage and uneven distribution of water resources in China are very serious. The contradiction of water utilization has changed from insufficient supply to overload of Water Resources Carrying Capacity (WRCC). Based on the concept of sustainability, this study, combined with the society cycle process of virtual water, improves the evaluation method of WRCC and analyzes the WRCC of Northwest China. The method can be helpful to maintain the integrity of water ecology and the stability of water supply. The results show that: (1) The WRCC of Shaanxi is generally good. However, it has a downward trend in the past ten years, in which the environmental pressure is the largest. The WRCC of Gansu shows a downward trend on the whole, especially in terms of environmental and social pressure. The WRCC of Ningxia has been on the verge of overloading or slight overloading, and alleviated by virtual water trade. The WRCC of Xinjiang is greatly affected by virtual water outflow and has been on the verge of overloading or slight overloading. The WRCC of Qinghai is basically in a surplus state of carrying capacity. (2) Virtual water trade has a significant influence on the comprehensive pressure index of WRCC. The evaluation method of WRCC, combined with the society cycle process of virtual water, has a practical significance. (3) The regions of different endowments of water resources and the efficiency of using water can be appropriately different in development modes. We suggest that the regions with high and low use efficiency of water take the "radical development mode" and the "radical environmental protection mode", respectively. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
邱国玉, 张晓楠. 21世纪中国的城市化特点及其生态环境挑战. 地球科学进展, 2019, 34(6): 640-649.
城市化是世界范围的历史进程。中国的城市化虽然起步较晚,但是由于速度快、规模大、资源能源消耗高,从而带来一系列水环境和热环境问题。系统梳理了在全球气候变化和城市化的双重压力下,中国城市面临的水资源短缺与水污染、日益严重的城市热岛和生态水文灾害等生态环境挑战,提出要以城市生态水文学的理论和手段,解决城市生态环境问题,提升中国的城市化质量,实现宜居城市。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
贾学秀, 严岩, 朱春雁, 等. 区域水资源压力分析评价方法综述. 自然资源学报, 2016, 31(10): 1783-1791.
区域水资源压力分析是区域水资源评价的重要环节和内容。明确水资源压力的概念、梳理水资源压力评价方法,是水资源压力研究及可持续水资源管理的重要前提。论文基于国内外水资源压力理论研究与实践进展,分析了水资源压力的内涵,介绍了水资源压力评价的常用方法,从计算原理、过程以及应用等方面对水资源压力评价方法进行了概述和对比分析。同时,基于国内外相关研究和应用需求,展望了未来水资源压力研究的方向和重点问题,提出应当增加对地表水与地下水耦合、水质与水量耦合以及季节性因素的衡量等。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
赵勇, 裴源生, 陈一鸣. 我国城市缺水研究. 水科学进展, 2006, 17(3): 389-394.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
梁媛, 许新宜, 王红瑞, 等. 基于循环修正模式的云南省水资源短缺程度分析. 自然资源学报, 2013, 28(7): 1146-1158.
区域水资源短缺评价是水资源风险研究的基础。前期的研究多采用单一评价方法进行,致使评价结果存在差异。论文提出采用循环修正模式对单一评价方法得出的不同评价结果进行组合修正。通过构建云南省水资源短缺综合评价指标体系,利用模糊物元、模糊识别等多种单一评价方法进行评价,最后运用平均值法、Boarda法和Compeland法三种组合评价方法对单一评价方法得到的不同结果进行组合评价,建立了基于循环修正模式的水资源短缺程度评价模型并加以应用,给出了云南省16个地、市、州的水资源短缺程度的排序及其缺水类型的划分。
[
With continuing population growth and rapid economic development,coupled with increasingly serious water pollution,growing shortage of available water resources,water crisis shows up in many regions.Evaluation of the regional water shortage is the basis for the study of water resources risk. Previous studies, with the use of a single evaluation method, resulting in differences in evaluation results. In this paper, the circulating correction model derived from a single evaluation method generated a combination correction of the evaluation results. Comprehensive evaluation index system constructed indicates water shortage in Yunnan Province as well as aspects of water economics,construction control,water supply,water usage and water environment. The use of fuzzy matter-element, fuzzy pattern recognition, and other single evaluation method, finally, gains a combination of three evaluation methods, namely, average method, Boarda method and Compeland method for the different evaluation results.The Kendall test and Spearman test methods were carried out for pre-and post-conformance tests to ensure reliability of the model cycle correction in this paper. The establishment of the degree of shortage of water resources evaluation model based on the circulating correction mode and application, gives the present status of Yunnan Province including 16 cities in terms of degree of water shortage as well as the lack of water type in 2010, and corresponding countermeasures are put forward. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
王崴, 许新宜, 王红瑞, 等. 基于PSR与DCE综合模型的水资源短缺程度及变化趋势分析: 以北京市为例. 自然资源学报, 2015, 30(10): 1725-1734.
[
The water resources in China are limited in terms of capacity, supply and demand. How to address the problem of development, utilization, protection and management of water resources has become an important research area. To ensure the rigorous management of water resources and facilitate the pressure of water resources utilization, it is necessary to investigate the status of water resources shortage. However, there is a lack of study on the trend and changing speed of water resources shortage during the dynamic evaluation. To address this knowledge gap, this paper proposes a model of dynamic evaluation of water resources shortage based on the theory of acceleration for analyzing the trend and changing speed of water resources shortage. This paper concerns the issue of water shortage in Beijing from 2003 to 2010 based on PSR and DCE model. The results show a fluctuant change of water shortage degree in Beijing. The water shortage degree in Beijing firstly increased then after a decline it increased again. This change is not severe in most administrative districts except four districts (the district under city administration, Changping District, Miyun County and Yanqing County). The water shortage shows aggravating tendency in six administrative districts including Fangshan District, Shunyi District, Changping District, Huairou Pinggu District and Yanqing County, while shows alleviated tendency in four districts including the district under city administration, Tongzhou District, Daxing District and Miyun County.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
刘俊国, 赵丹丹. “量—质—生” 三维水资源短缺评价: 评述及展望. 科学通报, 2020, 65(36): 4251-4261.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
许新宜, 王韶伟, 庞博, 等. 水资源紧缺类型及其对策分析研究. 北京师范大学学报: 自然科学版, 2009, 45(1): 86-90.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
王晓青. 中国水资源短缺地域差异研究. 自然资源学报, 2001, 16(6): 516-520.
[
The classification of water shortage degree and shortage types of various provinces,re-gions and municipalities(excluding Taiwan)throughout China was carried out in the study by using comprehensive evaluation method and taking per capita available amount of water re-sources,per unit area available amount of water resources,per capita amount of water supplied and per unit GDP available water resources as indicators.According to the water shortage com-posite index number,water sufficient district,fragile district,water deficit district and serious deficit district are identified.In light with differential value of per capita available amount of wa-ter resources,per unit area available amount of water resources,per capita amount of water sup-plied with national mean value,resources type,engineering type and overloading type are catego-rized.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
童绍玉, 周振宇, 彭海英. 中国水资源短缺的空间格局及缺水类型. 生态经济, 2016, 32(7): 168-173.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
李想, 郭丹红, 刘家宏, 等. 京津冀协同发展背景下的县域水资源安全诊断. 水利水电技术: 中英文, 2021, 52(10): 59-71.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
Terrestrial ecosystems are essential for food and water security and CO2 uptake. Ecosystem function is dependent on the availability of soil moisture, yet it is unclear how climate change will alter soil moisture limitation on vegetation. Here we use an ecosystem index that distinguishes energy and water limitations in Earth system model simulations to show a widespread regime shift from energy to water limitation between 1980 and 2100. This shift is found in both space and time. While this is mainly related to a reduction in energy-limited regions associated with increasing incoming shortwave radiation, the largest shift towards water limitation is found in regions where incoming shortwave radiation increases are accompanied by soil moisture decreases. We therefore demonstrate a widespread regime shift in ecosystem function that is stronger than implied by individual trends in incoming shortwave radiation, soil moisture and terrestrial evaporation, with important implications for future ecosystem services.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
The sustainability of irrigated agriculture is threatening due to adverse climate change, given future projections that every one in four people on Earth might be suffering from extreme water scarcity by the year 2025. Pressurized irrigation systems and appropriate irrigation schedules can increase water productivity (i.e., product yield per unit volume of water consumed by the crop) and reduce the evaporative or system loss of water as opposed to traditional surface irrigation methods. However, in water-scarce countries, irrigation management frequently becomes a complex task. Deficit irrigation and the use of non-conventional water resources (e.g., wastewater, brackish groundwater) has been adopted in many cases as part of a climate change mitigation measures to tackle the water poverty issue. Protected cultivation systems such as greenhouses or screenhouses equipped with artificial intelligence systems present another sustainable option for improving water productivity and may help to alleviate water scarcity in these countries. This article presents a comprehensive review of the literature, which deals with sustainable irrigation for open-field and protected cultivation systems under the impact of climatic change in vulnerable areas, including the Mediterranean region.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
张兵兵. 中国用水结构优化研究. 杭州: 浙江大学, 2017.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
范琳琳, 王红瑞, 刘凤丽, 等. 基于WEI+的流域水资源短缺分析. 长江科学院院报, 2017, 34(4): 9-14.
为了分析我国各流域的水资源短缺现状,引入欧盟开发改进的水资源开发利用系数(Water Exploitation Index Plus,简称WEI+),以全国10个水资源一级区作为研究对象,计算2003—2012年各水资源一级区的水资源短缺情况。结果表明①WEI+指数最小的是西南诸河区,其均值为1.9%;WEI+指数最大的是海河区,其均值为130%;且南方4区的WEI+指数均小于北方6区,说明我国北方比南方面临更为严重的水资源短缺问题。②南方4区的WEI+指数在2003—2012年间波动不大,而北方6区的WEI+指数波动剧烈;大部分地区的WEI+指数均呈现出下降趋势,这说明区域的水资源短缺情况有所缓解。③WEI+指数与流域水利水电开发利用程度在空间上的分布规律基本类似,这说明WEI+指数能够有效反映区域的水资源短缺情况。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
孙思奥, 任宇飞, 张蔷. 多尺度视角下的青藏高原水资源短缺估算及空间格局. 地球信息科学学报, 2019, 21(9): 1308-1317.
青藏高原水资源总量丰富,但由于水资源量与用水量在空间上分布不均衡,部分人口、城镇密集地区水资源短缺严重。本研究在多源数据的基础上,通过空间分析、降尺度处理等,建立了青藏高原省区、市域、县域空间尺度的水资源与用水量数据集。通过比较5、10、20、30年重现期多空间尺度的水资源短缺程度,分析水资源短缺在青藏高原的尺度效应,揭示青藏高原水资源短缺格局与特征,识别面临水资源短缺的人口与面积。结果表明,青藏高原在省区尺度无水资源短缺;在15个市域单元中,有3个市域出现水资源短缺;在115个县域单元中,有29个县域呈现出不同程度的水资源短缺,水资源短缺县域主要集中在青海省的河湟谷地、柴达木盆地与西藏自治区的一江两河流域等人口、城镇密集区域。总体而言,由于较大空间尺度地理单元内部各县域用水强度差异,在县域尺度面临水资源短缺的人口与面积大于市域与省区尺度面临水资源短缺的人口与面积。以县域为基本单元,发现青海省与西藏自治区30年重现期面临水资源短缺的人口占总人口的56.4%,出现水资源短缺的面积占总面积的10.4%。县域之间水资源短缺指数秩相关系数计算结果显示,省区内部各县域同时出现水资源短缺的可能性较大,而省区之间各县域同时出现水资源短缺的可能性相对随机。研究结果为制定青藏高原水资源短缺管理对策、促进区域城镇化与资源环境协调发展提供科学依据。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
刘佳旭, 李九一, 李丽娟, 等. 昆明市水资源短缺空间格局综合分析. 长江科学院院报, 2017, 34(8): 6-10, 17.
水资源短缺是影响昆明市区域经济高速、稳定发展的核心问题之一。依据2001—2012年《昆明市水资源公报》数据,采用基尼系数、人均水资源量、水资源开发利用率、水资源负载指数等方法分别对昆明市的水资源变化趋势、时空分布特征、匹配性、短缺格局进行分析。研究结果表明:昆明市人均水资源量不及云南省及全国平均水平,且内部差异明显,多年平均人均水资源量极值比高达10.78,最少的地区为主城四区(299 m<sup>3</sup>/人);水资源量与GDP、人口匹配性较差,与耕地匹配性相对较好;昆明市水资源主要呈现出“南缺北丰”格局,且缺水地区数量不断增多,多数地区缺水等级逐渐加重。雨洪利用、多方面节水、跨区域调水、产业结构调整等是缓解昆明市水资源短缺的有效措施。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
操信春, 刘喆, 吴梦洋, 等. 水足迹分析中国耕地水资源短缺时空格局及驱动机制. 农业工程学报, 2019, 35(18): 94-100.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
崔晨曦, 孟凡浩, 罗敏, 等. 基于地理探测器的内蒙古耕地水资源短缺时空变化特征及驱动力分析. 中国农业资源与区划, 2023, 44(1): 150-161.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
Previous studies have shown an association between experience of intimate partner violence and abuse (IPVA) and depression. Whether this is a causal relationship or explained by prior vulnerability that influences the risk of both IPVA and depression is not known.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
张晨旭, 谢峰, 林振, 等. 基于组轨迹模型及其研究进展. 中国卫生统计, 2020, 37(6): 946-949.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
朱建平. 应用多元统计分析. 北京: 科学出版社, 2016: 109-110.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
陈鹏宇. 线性无量纲化方法对比及反向指标正向化方法. 运筹与管理, 2021, 30(10): 95-101.
线性无量纲化方法的对比及反向指标的正向化方法都是综合评价的重要研究内容。从指标差异信息的角度,以TOPSIS、基于街区距离的TOPSIS和线性加权综合法为例,基于理论推导和实证分析对比了常用的线性无量纲化方法,并提出了两种反向指标正向化方法。研究发现,对于线性加权综合法和TOPSIS,不同线性无量纲化方法下同一指标归一化极差的不同是导致排序结果存在差异的关键因素;本文提出的反向指标正向化方法,不仅可以保证正向化前后TOPSIS、基于街区距离的TOPSIS的评价值不变,也可以实现反向指标正向化后线性加权综合法与基于街区距离的TOPSIS在排序目的上的等效性。最后,本文提出了线性无量纲化方法和反向指标正向化方法的应用建议。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
Identifying and monitoring multiple disease biomarkers and other clinically important factors affecting the course of a disease, behavior or health status is of great clinical relevance. Yet conventional statistical practice generally falls far short of taking full advantage of the information available in multivariate longitudinal data for tracking the course of the outcome of interest. We demonstrate a method called multi-trajectory modeling that is designed to overcome this limitation. The method is a generalization of group-based trajectory modeling. Group-based trajectory modeling is designed to identify clusters of individuals who are following similar trajectories of a single indicator of interest such as post-operative fever or body mass index. Multi-trajectory modeling identifies latent clusters of individuals following similar trajectories across multiple indicators of an outcome of interest (e.g., the health status of chronic kidney disease patients as measured by their eGFR, hemoglobin, blood CO levels). Multi-trajectory modeling is an application of finite mixture modeling. We lay out the underlying likelihood function of the multi-trajectory model and demonstrate its use with two examples.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
彭张林, 张爱萍, 王素凤, 等. 综合评价指标体系的设计原则与构建流程. 科研管理, 2017, 38(s1): 209-215.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
刘庆芳, 王小坤, 朱青, 等. 基于“三生”功能的西藏自治区水资源承载力系统耦合关系. 自然资源学报, 2023, 38(6): 1618-1631.
基于PSR模型,从“三生”功能出发,实证评价西藏自治区水资源承载力,并采用耦合协调模型进一步探析水资源承载力“三生”子系统间的耦合协调关系。结果表明:(1)研究期内,西藏的水资源承载力偏低,总体呈现出波动上升的演化态势,但存在显著的空间异质性。(2)水资源“三生”子系统承载力差异显著,生产、生活和生态子系统的承载力均呈现提升态势;生产和生态子系统的承载力在空间上表现出“东高西低”的分布特征,生活子系统承载力则呈现“中部强于四周”的交替式分布规律。(3)西藏水资源承载力子系统处于较高水平耦合状态,水资源承载力子系统耦合协调度呈现出“藏东南高于藏西北,林芝市显著优于其他地市”的空间分布特征。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
杜剑. 山东省三大流域水资源紧缺程度研究. 济南: 山东师范大学, 2010.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
丁竹英, 陈瀛洲, 胡陈静. 中国水资源短缺程度及缺水类型研究. 特区经济, 2018, (9): 47-50.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
卢开东, 王健健, 马燮铫, 等. 基于DPSIR模型的芜湖市水生态承载力研究与建议. 环境工程技术学报, 2022, 12(2): 538-545.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[43] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[44] |
赵琳, 何萍, 闫桃, 等. 昆明市近50 a降水变化特征分析. 云南地理环境研究, 2017, 29(6): 54-61.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[45] |
吕文康. 滇中引水工程将改写昆明缺水史. 昆明日报, 2022-04-06( 1).
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[46] |
Urbanization and climate change are together exacerbating water scarcity-where water demand exceeds availability-for the world's cities. We quantify global urban water scarcity in 2016 and 2050 under four socioeconomic and climate change scenarios, and explored potential solutions. Here we show the global urban population facing water scarcity is projected to increase from 933 million (one third of global urban population) in 2016 to 1.693-2.373 billion people (one third to nearly half of global urban population) in 2050, with India projected to be most severely affected in terms of growth in water-scarce urban population (increase of 153-422 million people). The number of large cities exposed to water scarcity is projected to increase from 193 to 193-284, including 10-20 megacities. More than two thirds of water-scarce cities can relieve water scarcity by infrastructure investment, but the potentially significant environmental trade-offs associated with large-scale water scarcity solutions must be guarded against.© 2021. The Author(s).
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |