基于“量—价”框架的长江经济带水资源资产核算及驱动因素分析
Water resources asset accounting and driver analysis in the Yangtze River Economic Belt based on the "quantity-value" framework
水资源资产核算是全民所有自然资源资产清查的重要内容,是编制自然资源资产负债表的基本前提。基于区域水资源资产演变循环规律,构建水资源资产的“量—价”核算模型,采用调整系数法、能值分析法、地理探测器模型等方法研究长江经济带水资源资产情况及其空间分异的影响因素。结果表明:(1)研究期间长江经济带水资源资产实物量呈现波动变化趋势,江苏表现最好,湖北次之,贵州和重庆的表现较差;(2)2012—2021年,长江经济带水资源资产价值量的年均涨幅为13.14%,呈现出“下游>中游>上游”的空间分异特征;(3)人口密度是长江经济带水资源资产的主要驱动因素,且因子间的交互作用更能解释其空间分布的地域差异。研究结论有助于厘清水资源资产的形成机理,完善国民经济宏观核算体系,为水资源可持续利用提供有益参考。
Accounting for water resources assets is an important part of the inventory of nationally owned natural resources assets, and is a basic prerequisite for the preparation of natural resources balance sheets. This study examines the macroeconomic data of the 11 provincial-level regions in the Yangtze River Economic Belt (YREB) from 2012 to 2021. It begins by elucidating the natural system of water resources formation and the economic system of water resources asset formation. The concept of potential water resources assets is introduced, and the cyclical patterns of water resources asset evolution are investigated. Then, based on the "quantity-value" framework, the adjusted coefficient method and energy value analysis method are adopted to construct models for the physical quantity and value accounting of regional water resources assets. Finally, an indicator system is designed from economic, social, environmental, and ecological dimensions. The geographic detector model is selected to explore the influencing factors of spatial differentiation of water resources assets. The research findings reveal that: (1) The physical volume of water resources assets in the YREB demonstrates fluctuating changes, reaching a peak of 2734.27 billion m3 in 2019 and a low value of 2548.70 billion m3 in 2020. Specifically, Shanghai, Jiangsu, Hunan, and Yunnan display "N"-shaped trends, while Jiangxi, Hubei, and Guizhou demonstrate "W"-shaped trends. The remaining regions exhibit more moderate trends. (2) The overall value of water resources assets fluctuates, showing an upward trend with an average annual increase of 13.14%. The spatial distribution of water resources asset value exhibits a pattern of "downstream>midstream>upstream" differentiation. (3) Population density is identified as the primary driver of spatial differentiation in water resources assets within the YREB. The cumulative explanatory power of the social subsystem is the highest, indicating that social factors have the greatest influence on the spatial pattern of water resources assets. The research findings contribute to elucidating the cyclic evolution process of water resources, latent water assets, and water resources assets, improving the macroeconomic accounting system, and providing valuable insights for the sustainable utilization of water resources.
“量—价”框架 / 水资源资产实物量 / 水资源资产价值量 / 长江经济带 / 驱动因素 {{custom_keyword}} /
"quantity-value" framework / quantity of water resources assets / value of water resources assets / Yangtze River Economic Belt / driving factors {{custom_keyword}} /
表1 判断因子间交互作用的依据Table 1 Basis for judging the interaction between factors |
判断基础 | 交互作用类型 |
---|---|
q(X1∩X2)<Min[q(X1), q(X2)] | 非线性减弱 |
min[q(X1), q(X2)]<q(X1∩X2)<max[q(X1), q(X2)] | 单因子非线性减弱 |
q(X1∩X2)>Max[q(X1), q(X2)] | 双因子增强 |
q(X1∩X2)=q(X1)+q(X2) | 独立 |
q(X1∩X2)>q(X1)+q(X2) | 非线性增强 |
表2 水资源资产的影响因素指标体系Table 2 Indicator system of factors affecting water resources assets |
目标层 | 准则层 | 内容层 | 符号 | 单位 | 属性 |
---|---|---|---|---|---|
水资源资产 | 经济 | 万元工业增加值用水量 | X1 | 亿m3/万元 | 负向 |
环境污染投资占比 | X2 | % | 正向 | ||
第三产业占比 | X3 | % | 正向 | ||
社会 | 人口密度 | X4 | 人/km2 | 正向 | |
城市化率 | X5 | % | 正向 | ||
人均生活用水量 | X6 | m3 | 负向 | ||
环境 | 水资源开发利用率 | X7 | % | 正向 | |
产水模数 | X8 | m3/km2 | 正向 | ||
人均水资源量 | X9 | m3 | 正向 | ||
生态 | 万元GDP COD排放量 | X10 | t/万元 | 负向 | |
污水处理率 | X11 | % | 正向 | ||
水质达标率 | X12 | % | 正向 |
表3 2012—2021年长江经济带水资源资产价值量核算结果Table 3 Accounting results of the value of water resources assets in the Yangtze River Economic Belt, 2012-2021(亿元) |
省(直辖市) | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 | 2019年 | 2020年 | 2021年 |
---|---|---|---|---|---|---|---|---|---|---|
上海 | 94.23 | 99.46 | 83.53 | 40.33 | 45.11 | 68.05 | 69.21 | 61.72 | 54.90 | 70.20 |
江苏 | 259.38 | 329.79 | 489.82 | 436.30 | 417.07 | 623.91 | 759.90 | 963.99 | 667.65 | 731.44 |
浙江 | 143.19 | 183.69 | 180.49 | 183.59 | 201.39 | 262.88 | 317.06 | 256.33 | 312.43 | 319.79 |
安徽 | 119.14 | 139.55 | 143.56 | 137.92 | 132.22 | 184.07 | 207.53 | 247.75 | 192.07 | 241.46 |
江西 | 39.48 | 45.52 | 74.39 | 80.81 | 76.76 | 94.06 | 136.56 | 95.47 | 131.61 | 154.86 |
湖北 | 149.99 | 114.76 | 120.39 | 121.22 | 109.24 | 201.72 | 181.21 | 341.97 | 208.14 | 276.47 |
湖南 | 70.88 | 79.15 | 127.37 | 94.02 | 138.10 | 156.25 | 217.38 | 167.84 | 199.47 | 224.09 |
重庆 | 60.22 | 66.95 | 66.24 | 84.47 | 84.46 | 89.39 | 107.11 | 120.21 | 107.43 | 120.36 |
四川 | 115.09 | 150.33 | 140.89 | 164.65 | 175.66 | 194.80 | 205.86 | 216.53 | 212.89 | 251.14 |
云南 | 76.30 | 95.33 | 99.12 | 105.60 | 108.23 | 120.89 | 134.89 | 162.68 | 168.35 | 201.37 |
贵州 | 38.06 | 50.52 | 47.17 | 37.49 | 65.78 | 74.51 | 89.39 | 91.65 | 93.35 | 107.21 |
表4 2012—2021年长江经济带单位水资源资产价值量核算结果Table 4 Accounting results of the value of water resources assets per unit in the Yangtze River Economic Belt, 2012-2021 (元/m3) |
省(直辖市) | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 | 2019年 | 2020年 | 2021年 |
---|---|---|---|---|---|---|---|---|---|---|
上海 | 0.55 | 0.53 | 0.53 | 0.26 | 0.28 | 0.43 | 0.45 | 0.41 | 0.38 | 0.43 |
江苏 | 0.43 | 0.50 | 0.70 | 0.63 | 0.59 | 0.86 | 1.04 | 1.28 | 0.95 | 1.01 |
浙江 | 0.67 | 0.86 | 0.87 | 0.93 | 1.04 | 1.37 | 1.70 | 1.44 | 1.81 | 1.78 |
安徽 | 0.38 | 0.44 | 0.49 | 0.45 | 0.43 | 0.59 | 0.68 | 0.84 | 0.66 | 0.79 |
江西 | 0.15 | 0.22 | 0.35 | 0.39 | 0.37 | 0.44 | 0.65 | 0.44 | 0.61 | 0.71 |
湖北 | 0.45 | 0.39 | 0.41 | 0.39 | 0.36 | 0.67 | 0.59 | 1.07 | 0.71 | 0.81 |
湖南 | 0.27 | 0.29 | 0.47 | 0.34 | 0.51 | 0.57 | 0.73 | 0.55 | 0.75 | 0.76 |
重庆 | 0.73 | 0.79 | 0.83 | 1.11 | 1.13 | 1.17 | 1.42 | 1.58 | 1.49 | 1.71 |
四川 | 0.54 | 0.68 | 0.73 | 0.72 | 0.76 | 0.84 | 0.92 | 1.03 | 1.15 | 1.29 |
云南 | 0.68 | 0.82 | 0.78 | 0.85 | 0.91 | 0.91 | 1.06 | 1.28 | 1.36 | 1.57 |
贵州 | 0.34 | 0.56 | 0.51 | 0.41 | 0.72 | 0.83 | 0.93 | 0.92 | 1.12 | 1.09 |
表5 长江经济带水资源资产驱动因子探测结果Table 5 Detection results of water resources asset drivers in the Yangtze River Economic Belt |
Y | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
水资源资 产实物量 | q值 | 0.3247 | 0.0055 | 0.1581 | 0.8190 | 0.1812 | 0.1204 | 0.1285 | 0.1396 | 0.2567 | 0.0520 | 0.0104 | 0.2503 |
p值 | 0.000 | 0.9869 | 0.0149 | 0.000 | 0.000 | 0.0191 | 0.2568 | 0.0111 | 0.000 | 0.2906 | 0.9213 | 0.0060 | |
排序 | 2 | 12 | 6 | 1 | 5 | 9 | 8 | 7 | 3 | 10 | 11 | 4 | |
水资源资 产价值量 | q值 | 0.3765 | 0.0561 | 0.1890 | 0.6879 | 0.3493 | 0.1487 | 0.0832 | 0.1433 | 0.1870 | 0.0812 | 0.0553 | 0.0703 |
p值 | 0.000 | 0.2506 | 0.0027 | 0.000 | 0.000 | 0.0044 | 0.5028 | 0.0080 | 0.000 | 0.0736 | 0.2000 | 0.3058 | |
排序 | 2 | 11 | 4 | 1 | 3 | 6 | 8 | 7 | 5 | 9 | 12 | 10 |
表6 影响因子交互探测结果Table 6 Influence factor interaction detection results |
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 | 0.5218* | 0.7281* | 0.7302# | 0.5822* | 0.7486# | 0.4885# | 0.6643# | 0.4565* | 0.4110* | 0.4322# | 0.4854# | |
X2 | 0.4670# | 0.3575# | 0.8709# | 0.4194# | 0.2930# | 0.1816# | 0.3303# | 0.2499# | 0.2525# | 0.1572* | 0.2986# | |
X3 | 0.6222* | 0.2376# | 0.7996* | 0.5132* | 0.4162# | 0.3738# | 0.3452# | 0.5955# | 0.4543# | 0.4269# | 0.3984# | |
X4 | 0.8588* | 0.8475# | 0.8458* | 0.7128* | 0.7306* | 0.7885# | 0.7131* | 0.7059* | 0.7717# | 0.7882# | 0.8166# | |
X5 | 0.4871* | 0.2889# | 0.3801# | 0.8723* | 0.4372# | 0.5936* | 0.6737# | 0.7084# | 0.4123* | 0.4350# | 0.4221# | |
X6 | 0.8723# | 0.1808# | 0.3224# | 0.8700* | 0.3862# | 0.2780# | 0.4461# | 0.7308# | 0.2842# | 0.2600# | 0.2502# | |
X7 | 0.4240* | 0.1883# | 0.3532# | 0.8847* | 0.3661# | 0.2887# | 0.4232# | 0.3242# | 0.2580# | 0.1736# | 0.2609# | |
X8 | 0.7854# | 0.2099* | 0.3124# | 0.8498* | 0.7169# | 0.4218# | 0.5723# | 0.4946# | 0.4145# | 0.2769# | 0.2457# | |
X9 | 0.5136* | 0.3719# | 0.6371# | 0.8289* | 0.7493# | 0.7742# | 0.5334# | 0.5435# | 0.2857# | 0.2835# | 0.5149# | |
X10 | 0.4204# | 0.1580# | 0.4130# | 0.8609* | 0.2893# | 0.2348* | 0.2301# | 0.3737# | 0.3976# | 0.2135# | 0.3650# | |
X11 | 0.3907# | 0.0767* | 0.4093# | 0.8384# | 0.2983# | 0.2189* | 0.2311# | 0.1859# | 0.3330# | 0.1675# | 0.2203# | |
X12 | 0.4741* | 0.3877# | 0.5543# | 0.8529* | 0.4660# | 0.4371* | 0.4525# | 0.4121# | 0.5498# | 0.5205# | 0.3796# |
注:#表示非线性增强,*表示双因子增强。 |
[1] |
杨世忠, 谭振华, 王世杰. 论我国自然资源资产负债核算的方法逻辑及系统框架构建. 管理世界, 2020, 36(11): 132-144.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
贾亦真, 沈菊琴, 王晗. 区域水资源资产确认、计量及报表编制. 自然资源学报, 2022, 37(12): 3297-3312.
为落实水资源资产负债的编制,提高核算主体水资源资产化管理水平,在对比分析水资源和资产定义的基础上,明确界定了水资源资产的概念和范围;根据水资源服务价值和水权益实体对水资源的不同用水方式,将水资源资产划分为水权资产、水经济资产和水生态服务资产3大类14个子科目;确定了水资源资产各科目的核算模型;最后通过构建水资源资产核算表,对郑州市水资源资产进行了实物量和价值量计量。本文进一步完善了水资源资产的确认、计量和列报体系,为区域水资源资产负债表的编制提供了一定的理论和实践参考。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
曹升乐, 刘春彤, 李福臻, 等. 基于社会经济发展水平的济南市水资源资产与负债研究. 中国人口·资源与环境, 2019, 29(5): 88-97.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
徐素波, 张山, 陈丽芬. 自然资源资产负债表编制探析. 财会月刊, 2019, (1): 79-85.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
沈菊琴, 郭孟卓, 万隆, 等. 水资源资产价值评估的替代法研究. 河海大学学报: 自然科学版, 2000, 28(3): 51-54.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
王浩, 甘泓, 武博庆. 水资源资产与现代水利. 中国水利, 2002, (10): 151-153.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
张婕, 刘玉洁, 潘韬, 等. 自然资源资产负债表编制中生态损益核算. 自然资源学报, 2020, 35(4): 755-766.
生态损益核算是自然资源资产负债表的重要部分,是对自然资源分类核算的扩展和补充。本文梳理生态损益核算的总体思路,系统总结生态损益核算技术,以围场县为例进行实证,遵循先实物后价值的核算原则,选择森林、草地、湿地生态系统,按不同的生态服务指标进行实物量和价值量的核算,并在已有的核算基础上计算各类型生态系统的实物量参数和价值量参数,以便根据面积统计数据进行快速简洁的核算比较。研究发现:围场县2015年生态系统服务功能价值量总值为338.99亿,与2013年相比增加了0.04%。生态系统服务功能价值量从大到小依次为草地、森林、湿地,核算期间森林和草地生态系统价值量分别下降0.06%和0.22%,湿地生态系统价值量增加4.47%。研究成果有助于全面理解和量化自然资源数量变化和质量变化带来的生态效应,并为自然资源资产负债表中的负债核算提供数据基础。
[
Ecological profit and loss accounting is an important part of the natural resources balance sheet and it is an extension and supplement to the classification of natural resources. This study combs the general idea of ecological profit and loss accounting, systematically summarizes the ecological profit and loss accounting technology, and takes the Weichang county as an example. Following the principle of accounting for values after the physical quantity, the forest, grassland and wetland ecosystems are selected, the service indicator carries out the accounting of the physical quantity and the value quantity, and calculates the physical quantity parameter and the value quantity parameter of each type of ecosystem based on the existing accounting, so as to make a quick and simple accounting comparison based on the area statistics. The study found that, in 2015, the total value of the ecosystem service function value of Weichang county was 33.899 billion, an increase of 0.04% compared with 2013. The value of ecosystem services functioned from grassland to forest and wetland. The values of forest and grassland ecosystems decreased by 0.06% and 0.22%, respectively, and the value of wetland ecosystem increased by 4.47%. The results contribute to a comprehensive understanding of the ecological effects brought by the changes in the quantity and quality of natural resources, and provide a data base for liability accounting in natural resource balance sheets.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
邓淇中, 张玲. 长江经济带水资源绿色效率时空演变特征及其影响因素. 资源科学, 2022, 44(2): 247-260.
长江经济带是中国重要的水资源聚集区、水生态功能区,其水资源绿色效率问题直接影响了生态系统质量和稳定性。本文从高质量发展视角,构建了长江经济带110个城市水资源绿色效率评价指标体系,采用定基极差熵权法、超效率EBM模型和GML生产率指数以及空间面板分位数回归等计量方法,对水资源绿色效率的时空演变特征及其影响因素等问题进行测度与识别。结果表明:①从时序演变来看,2005—2018年长江经济带水资源绿色效率总体水平呈高低交错状的波动上升趋势,先后经历了“稳增期”“振落期”“提速期”等3个阶段。②从空间格局来看,长江经济带水资源绿色效率空间分异特征显著,水资源绿色效率较高的地区主要是经济发达的中心或副中心城市,数值较低的城市大多集聚在中、上游经济不发达地区,表现出由高向低的扩散迹象,且在全局空间检验中发现存在正的自相关性,局部空间存在集聚现象和溢出效应。③从影响因素来看,产业结构、经济发展水平、资源禀赋、科学技术水平、政府管制力度以及对外贸易程度对水资源绿色效率均有显著影响,但在不同分位点下的水资源绿色效率,其驱动因素的影响方向与力度均有差异,该结论在一系列稳健性检验之后仍旧成立。最后,根据长江经济带水资源绿色效率时空演变趋势和规律,有针对性地提出了相关政策建议。
[
The Yangtze River Economic Belt is an important water resources gathering area and water ecological functional area in China, and its green efficiency of water resources directly affects the quality and the stability of the ecosystem. From the perspective of high-quality development, this paper reconstructs the green efficiency evaluation index system of water resources in the Yangtze River Economic Belt. Then, we measure and identify the characteristics of the spatiotemporal pattern and influencing factors of the green efficiency of water resources by using the method of fixed base range entropy weight, the super-efficiency EBM model, GML productivity index and the quantitative regression of spatial panel data model. The results shows that: (1) From the evolution of time sequence, the overall green efficiency of water resources in the Yangtze River Economic Belt from 2005 to 2018 shows a fluctuant upward tendency taken on the high and low staggered form, which successively experiences three stages: “steady increase period”, “vibration period”, and “speed-up period”. (2) From the perspective of spatial pattern, the spatial difference of green efficiency of water resources in the Yangtze River Economic Belt is remarkable. The area with higher green efficiency of water resources are mainly economically developed central or sub-central cities, as the cities with low level gathers in the middle reaches and upstream underdeveloped regions, which shows the sign of proliferation from high to low. And there is a positive autocorrelation in global spatial testing. Meanwhile, the agglomeration phenomenon and spillover effect are been discovered in the local space. (3) From the perspective of driving factors, industrial structure, economic development level, resources endowment, science and technology level, government regulation and the degree of foreign trade all have a significant impact on the green efficiency of water resources. However, for the green efficiency of water resources at different quantiles, the driving factors have different effect on directions and strengths, which is still valid after a series of robustness tests. Finally, according to the trend and law of spatial and temporal of the green efficiency of water resources in the Yangtze River Economic Belt, the relevant policy recommendations are put forward. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
郑德凤, 王佳媛, 李钰, 等. 基于节水视角的中国水资源压力时空演变及影响因素分析. 地理科学, 2021, 41(1): 157-166.
基于水资源节约视角,采用区域水资源规划消耗量占该地区水资源可利用量的比重来测算水资源压力指数,运用趋势分析、探索性数据分析(ESDA)方法对2005—2017年中国31个省市水资源压力指数空间格局演化特征与空间相关性进行分析,并选取8个相关变量,采用地理探测器探究影响水资源压力指数空间分异的因素,结论如下:① 研究期内,部分省份水资源压力指数呈上升趋势,环渤海、长江下游和黄河下游等水资源压力较高地区具有较大的节水潜力;水资源压力空间分布不均,东西方的区域差异大于南北方。② 水资源压力指数具有明显的空间集聚性,且集聚现象不断加强,水资源压力高高集聚和低低集聚地区空间分布较为稳定。③ 2005—2017年,影响全国水资源压力空间分异最主要的因素是万元GDP用水量与万元工业增加值用水量;东部地区水资源压力主要由人口数量、生活用水量、牲畜数量和万元工业增加值用水量决定;中、西部经济欠发达地区主要受万元GDP用水量与COD排放量的影响。
[
Based on the perspective of water-saving, water stress was defined as the ratio of the planned consumption of water resources to available water resources. This article estimated the water resources stress index of 31 provinces from 2005 to 2017, the ESDA (Exploratory Spatial Data Analysis) model was applied to study the spatial changing characteristic and correlation pattern of water resources stress index, the results showed that: 1) During the study period, the water resources stress index had a rising tendency in general, in the Bohai bay area, water resources stress index was high. Bohai Rim, the lower reaches of the Yangtze River and the Yellow River had great water-saving potential; water resources stress was unevenly distributed in space. The difference of values from west to east were more than that of values from south to north. 2) The water resource stress index had obviously spatial agglomeration, and the agglomeration phenomenon showed a trend of strengthening. The spatial distribution of water resource stress index in high agglomeration areas and low agglomeration areas were relatively stable. 3) From 2005 to 2017, the main factors influencing the spatial distribution of water resource stress index across the country were water consumption per 10000 GDP and water consumption of ten thousand yuan industrial added value. The spatial differentiation in eastern China was mainly determined by the population, domestic water consumption, livestock quantity and water consumption of ten thousand yuan industrial added value. The less developed areas in the central and western regions were mainly determined by the water consumption per 10000 GDP and COD emissions. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
陈祖军, 李广鹏, 谭显英. 华东沿海城市水资源安全概念及未来战略示范研究. 水资源保护, 2017, 33(6): 38-46.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
沈菊琴, 聂勇, 孙付华, 等. 河道水资源资产确认及计量模型研究. 会计研究, 2019, (8): 12-17.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
左其亭, 吴青松, 金君良, 等. 区域水平衡基本原理及理论体系. 水科学进展, 2022, 33(2): 165-173.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
张建云. 气候变化对国家水安全的影响及减缓适应策略. 中国水利, 2022, (15): 3-5, 14.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
张丹丹, 沈菊琴. 基于循环耦合视角的区域水资源资产核算. 自然资源学报, 2024, 39(1): 153-169.
为实现区域水资源平衡与社会经济高质量协同发展,提高水资源资产化管理水平,在系统分析多元水循环模式下水资源系统演变规律与水资源要素近远程耦合的基础上,提出水资源资产核算边界的多种分类方法;从循环耦合视角出发,利用水足迹分析方法,构建考虑实体水与虚拟水相结合的水资源资产核算模型,核算并分析中国各省(市、自治区)水资源资产情况。研究结果有助于厘清双循环新格局下水资源资产动态耦合的内在机理,拓展水资源核算的理论体系,为国家和区域开展水资源资产核算提供有益的科学参考。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
李芳, 吴凤平, 陈柳鑫, 等. 基于加权破产博弈模型的跨境流域水资源分配研究. 地理科学, 2021, 41(4): 728-736.
基于公平合理利用视角,将多准则决策模型与破产理论相结合探讨跨境水资源分配问题。通过梳理国际水法,设计了跨境流域水资源公平合理分配的指标体系,采用投影法解决这一多准则决策问题,并依此加权调整流域国用水需求。在加权调整用水需求和考虑议价能力的基础上,基于破产博弈模型探讨跨境流域水资源分配问题,以提高分配方案的公平合理性和可接受性。最后以澜沧江-湄公河流域的水资源分配为例进行研究,得到了澜沧江-湄公河旱季的水资源分配方案,并分析了需求加权调整系数对各流域国水资源分配的影响,进一步验证了分配模型的可靠性。
[
Based on the perspective of fair and reasonable utilization, this article combined the multi-criterion decision model and bankruptcy theory to discuss the allocation of transboundary river water resources. Through sorting out international water laws, considering the geographical location, population, substitution cost and other related factors of the basin country comprehensively, we designed the index system of fair and reasonable allocation of transboundary river water resources. The projection method is adopted to solve this multi-criterion decision-making problem, and then we obtained the weighted demand of each basin country. Based on the weighted adjustment of water demand and the consideration of bargaining power, we discussed the allocation of transboundary river water resources based on the bankruptcy game model, and we obtained the optimal allocation scheme according to the national utility function of each basin country, so as to improve the fairness, rationality and acceptability of the allocation scheme. Finally, taking the Lancang-Mekong River Basin as an example, we obtained the water resources allocation scheme of the Lancang-Mekong River Basin in the dry season, and analyzed the influence of demand weighted adjustment coefficient on the water resources allocation of each basin country, which further verifies the reliability of the allocation model. This article provides a feasible allocation model for making a fair, reasonable, and acceptable allocation scheme of transboundary river water resources, which is helpful to reduce water resource conflicts and promote water resource benefit-sharing in transboundary river basins. This article provides a feasible allocation model for making a fair, reasonable, and acceptable allocation scheme of transboundary river water resources, which is helpful to reduce water resource conflicts and promote water resource benefit-sharing in transboundary river basins. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
王兴民, 吴静, 白冰, 等. 中国CO2排放的空间分异与驱动因素: 基于198个地级及以上城市数据的分析. 经济地理, 2020, 40(11): 29-38.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
蓝盛芳, 钦佩, 陆宏芳. 生态经济系统能值分析. 北京: 化学工业出版社, 2002.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
黄晓荣, 秦长海, 郭碧莹, 等. 基于能值分析的价值型水资源资产负债表编制. 长江流域资源与环境, 2020, 29(4): 869-878.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
潘楚元, 苏时鹏. 国有自然资源资产管理: 功能定位、特征事实与国别比较借鉴. 自然资源学报, 2023, 38(7): 1682-1697.
国有自然资源资产是国家的重要财富,对社会经济发展、生态文明建设、民生权益保障和政治优势实现具有深刻影响。国有自然资源资产管理兼具国有特质与管理本质,系统把握中国特色社会主义的理论逻辑和自然资源领域的实践逻辑,分析阐明中国国有自然资源资产管理体制改革的整体逻辑,具有重要的现实意义和理论价值。以习近平生态文明思想为指导,践行“两山”理念,基于中国特色社会主义制度的制度效能支撑、生态文明建设的体制建设要求以及国有自然资源资产的基本属性特征,分析提出国有自然资源资产管理的功能定位与目标要求,剖析管理体制改革的特征事实与面临挑战;聚焦管理目标、部门职责、收益模式、监管方式等核心问题,在比较借鉴两个不同类型国家经验的基础上,提出明确委托代理关系下政府部门权责边界,培育多方主体共同参与管理,促进全民、代际所有者共享资产管理收益,实现自然资源资产管理监督独立化、规范化等建议。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
王劲峰, 徐成东. 地理探测器: 原理与展望. 地理学报, 2017, 72(1): 116-134.
空间分异是自然和社会经济过程的空间表现,也是自亚里士多德以来人类认识自然的重要途径。地理探测器是探测空间分异性,以及揭示其背后驱动因子的一种新的统计学方法,此方法无线性假设,具有优雅的形式和明确的物理含义。基本思想是:假设研究区分为若干子区域,如果子区域的方差之和小于区域总方差,则存在空间分异性;如果两变量的空间分布趋于一致,则两者存在统计关联性。地理探测器q统计量,可用以度量空间分异性、探测解释因子、分析变量之间交互关系,已经在自然和社会科学多领域应用。本文阐述地理探测器的原理,并对其特点及应用进行了归纳总结,以利于读者方便灵活地使用地理探测器来认识、挖掘和利用空间分异性。
[
Spatial stratified heterogeneity is the spatial expression of natural and socio-economic process, which is an important approach for human to recognize nature since Aristotle. Geodetector is a new statistical method to detect spatial stratified heterogeneity and reveal the driving factors behind it. This method with no linear hypothesis has elegant form and definite physical meaning. Here is the basic idea behind Geodetector: assuming that the study area is divided into several subareas. The study area is characterized by spatial stratified heterogeneity if the sum of the variance of subareas is less than the regional total variance; and if the spatial distribution of the two variables tends to be consistent, there is statistical correlation between them. Q-statistic in Geodetector has already been applied in many fields of natural and social sciences which can be used to measure spatial stratified heterogeneity, detect explanatory factors and analyze the interactive relationship between variables. In this paper, the authors will illustrate the principle of Geodetector and summarize the characteristics and applications in order to facilitate the using of Geodetector and help readers to recognize, mine and utilize spatial stratified heterogeneity. {{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |