基于生态系统服务优化的滨海湿地一体化保护—修复格局构建

智烈慧, 周方文, 李晓文, 马田田, 邵冬冬, 白军红, 崔保山, 郭卫华

自然资源学报 ›› 2023, Vol. 38 ›› Issue (12) : 3150-3165.

PDF(3301 KB)
PDF(3301 KB)
自然资源学报 ›› 2023, Vol. 38 ›› Issue (12) : 3150-3165. DOI: 10.31497/zrzyxb.20231213
其他研究论文

基于生态系统服务优化的滨海湿地一体化保护—修复格局构建

作者信息 +

Maximal multiple ecosystem services for coastal wetlands by integrating their conservation and restoration pattern in the Yellow River Delta, China

Author information +
文章历史 +

摘要

传统的湿地修复实践侧重点状效果,较少关注景观尺度的空间选址策略。而滨海受损湿地与未受损自然湿地具有结构和功能联系,因此保护和修复应协同优化。以黄河三角洲滨海湿地为例,将湿地保护与修复格局统一到滨海湿地典型生态系统服务(碳储、生境质量和水质净化)提升构架下,以受损区内优势种的适宜生境作为潜在修复区,发展了一套一体化保护—修复格局构建及优化方法。结果表明:保护和修复50%的生态系统服务核心区能够以最小的成本实现目标最大化;为达成该目标应优先将部分自然湿地划入保护区,随后撤出保护区内现存的养殖池,最后实施保护区内的退盐还湿和保护区外的退养还滩。研究提出的方法丰富了国土空间生态修复的技术体系,确定的保护—修复优先区有助于科学划定生态“保护红线”和“修复绿线”,相关调控措施能够为优化滨海湿地现有保护格局提供科学的决策支持。

Abstract

Traditional restoration practice focused on the site-based success, with less concern about spatial strategy of site-selection restoration at landscape scale. However, site-based restoration may achieve extra ecological benefits if they spatially form an eco-network with existing protected area where their ecosystem functioning can be co-beneficial each other. We therefore developed a novel site-selection spatial strategy to optimize restoration and conservation pattern with maximized co-benefits of ecosystem services (ES) for the coastal wetlands in the Yellow River Delta. We firstly identified the potential restorable sites and target salt marsh based on their hydro-geomorphological regimes using Gaussian model, and captured the hotspots of three major types of ES (i.e., habitat, carbon sequestration, water purification) spatial explicitly by InVEST across the river delta after restoration. Then, the method of Systematic Conservation Planning was used to determine the integrated conservation-restoration pattern and optimal conservation-restoration ratio under the gradient of each conservation-restoration ratio. This involved weighing the economic costs of ecological functions, protecting existing wetlands, and restoring potential wetlands, as well as the representativeness, complementarity, and connectivity of multiple typical ecosystem services under the potential pattern. Finally, the study suggests conservation-restoration tactics within the framework of each scale's optimum pattern. The study suggests conservation-restoration procedures based on the ideal distribution of each proportion. The result indicates that maintaining 50% of ES hotspots after restoration would be the cost-efficient target setting to maximize the regional ES with minimized cost, and thus the prioritized sites for restoration were filtered out by excluding existing protected area from those selected ES hotspots at this target level (50%) across the delta. The integrated conservation-restoration pattern of coastal wetlands that this study proposes to build and optimize enriches the technical system of ecological restoration of land space, and the priority areas for conservation and restoration as well as related regulatory measures can support scientific decision-making for optimizing the current conservation pattern of coastal wetlands.

关键词

生态系统服务 / 系统保护规划 / 国土空间生态修复 / 一体化保护修复 / 滨海湿地

Key words

ecosystem service / system protection planning / ecological restoration of land and space / integrated conservation and restoration / coastal wetlands

引用本文

导出引用
智烈慧, 周方文, 李晓文, 马田田, 邵冬冬, 白军红, 崔保山, 郭卫华. 基于生态系统服务优化的滨海湿地一体化保护—修复格局构建[J]. 自然资源学报, 2023, 38(12): 3150-3165 https://doi.org/10.31497/zrzyxb.20231213
ZHI Lie-hui, ZHOU Fang-wen, LI Xiao-wen, MA Tian-tian, SHAO Dong-dong, BAI Jun-hong, CUI Bao-shan, GUO Wei-hua. Maximal multiple ecosystem services for coastal wetlands by integrating their conservation and restoration pattern in the Yellow River Delta, China[J]. JOURNAL OF NATURAL RESOURCES, 2023, 38(12): 3150-3165 https://doi.org/10.31497/zrzyxb.20231213
近半个世纪以来,港口建设、滩涂围垦、近岸水产养殖等高强度的围填海活动导致沿海滩涂、盐沼、红树林和海草床等滨海湿地被侵占[1-4],使得滨海湿地生态系统结构受损和功能退化。如何保护好现有的滨海湿地、修复退化的滨海湿地,有效促进生态保护与社会经济的协调,是实现中国滨海区域可持续发展亟待解决的关键问题,也是构建滨海区域生态安全屏障的战略需求。
对全球621处湿地修复项目效果进行评估,发现修复后湿地生态功能只有健康湿地均值的23%~26%,如果继续当前缺乏规划布局的修复模式,不仅低效甚至可能导致负面效果[5],而考虑与现状生态系统的交互影响关系会取得更好的修复成效[6]。对中国超过1000个滨海湿地修复项目进行分析发现,滨海湿地修复规划与湿地退化程度、生态系统服务重要性之间存在着不协调的关系[7]。为实现人类活动与自然生态系统协同发展,高效利用湿地修复的资本投入,需要寻求经济发展和生态系统服务发挥间的平衡[8]。系统保护规划思想(Systematic Conservation Planning,SCP)是保护规划发展的新阶段,考虑规划单元对生物多样性或生态系统服务的代表性、互补性及其格局对景观连通性的贡献等,以经济成本代价为约束条件,通过优化算法评估规划单元的不可替代性,确定优先保护格局[9-11]。目前,国内外已有学者将系统保护规划思想用于研究湿地的保护格局优化[12-15]。近几年,系统保护规划的理论与方法进一步拓展到湿地修复格局研究,Hermoso等[16]率先提出淡水湿地系统修复理论构架。接着,一些学者基于此对德国、瑞士的河流进行系统修复规划选址[17,18]。中国的湿地修复规划开展较晚,主要是针对具体湿地类型进行修复规划,包括对河流湖泊湿地区域[19]、红树林等重要湿地的单项规划,以及生态城市建设中的湿地修复规划等[20-23]。另外,中国也开展了一些较大尺度的区域性湿地生态修复规划[24]。国内外湿地保护与修复规划的理论和实践表明:单一位置、单一组分或者单一生态系统类型的孤立点状修复模式,因缺乏从区域生态系统层面对整体修复格局的优化,结果往往导致总体修复成效较低,因而难以从实质上解决人类活动干扰下湿地受损的问题。可以说,强调湿地的系统修复是对局限于小尺度、孤立格局湿地修复模式的反思[25]
生态系统的修复同处在保护区内的生态系统一样,对维持区域生物多样性同样具有重要意义[26],而当前对保护生物学和恢复生态学二者的整合不足[27]。虽然当前系统保护规划理论已经拓展到修复研究中,解决了修复选址的系统优化问题,但没有考虑湿地修复格局对既有保护体系整体功能的影响,以及现有保护格局与修复格局之间的功能耦合效应,难以达到湿地保护与修复的内在整合和整体优化[25]。因此,湿地修复应关注修复格局的顶层设计,强调对受损湿地生态系统大尺度格局和功能修复与补偿的同时,需要建立一套滨海湿地一体化保护—修复格局优化方法[28]。不同于聚焦局域尺度土壤、植被、生物和水文等生态要素的传统修复模式,该方法强调区域尺度生态保护与生态修复格局的系统整合、权衡和整体功能优化[29]
黄河三角洲拥有中国暖温带保存最完整、最广阔、最年轻的湿地生态系统。自1976年黄河改道由清水沟入海起,黄河三角洲经历了高强度的围填海活动,自然湿地大面积萎缩。黄河三角洲滨海湿地已开展的湿地保护和修复项目在数量上较为可观。2019年《关于印发山东省打好渤海区域环境综合治理攻坚作战方案的通知》指出实施退耕(养)还湿(滩)等工程,恢复黄河三角洲、莱州湾等近海与海岸受损湿地生态功能和自然属性。2021年发布的《黄河流域生态保护和高质量发展规划纲要》明确指出黄河三角洲生物多样性保护价值和生态屏障作用,强调黄河三角洲的生态保护及污染治理。山东省人民政府制定《水污染防治行动计划》鼓励引导通过湿地净化鱼塘退水,削减入水污染负荷。但是在区域层面上,保护与修复工程是否可以达到空间与功能的高效整合优化尚不清楚。因此,对黄河三角洲滨海湿地进行一体化保护和修复格局的构建及优化,既契合了中国沿海区域可持续发展重大战略需求,又立足于国际相关领域前沿,具备重要的应用实践和科学研究意义。

1 研究方法与数据来源

1.1 技术路线

本文发展了一套滨海湿地多生态系统服务一体化保护—修复格局构建及优化的方法框架,技术流程见图1,包括:(1)利用高斯模型拟合确定滨海湿地优势种在湿地退化区的植被适宜生境,并以此作为潜在修复区,与自然湿地共同组成潜在保护—修复格局;(2)利用InVEST模型等模拟潜在保护—修复格局下典型生态系统服务,筛选高值核心区作为保护—修复对象,而后考虑对象的聚集性、不可替代性等,利用系统保护规划模型(Marxan模型)权衡在保护—修复目标水平梯度下的成本和功能;(3)通过敏感性分析确定各目标水平下的最优格局及最优目标水平对应的保护—修复格局,最后与现有保护区叠置,确定保护—修复策略的优先性。该方法旨在整合受损湿地的修复格局与现状湿地的保护格局,并通过生态系统服务和生态保护—修复成本代价的权衡实现保护与修复格局的协同优化。确定的最优保护—修复格局是对滨海湿地现有保护体系和格局的补充,同时强调湿地修复对区域整体生态功能提升的作用,旨在充分挖掘生态功能提升的潜力。后文详细介绍涉及的三个关键技术方法:识别潜在保护—修复格局、确定保护—修复对象和实施系统保护规划方法。
图1 基于生态系统服务优化的滨海湿地一体化保护—修复格局构建方法框架

Fig. 1 The methodological framework to identify integrated conservation-restoration pattern construction process based on ecosystem service optimization in coastal wetlands

Full size|PPT slide

1.2 研究区概况与数据来源

黄河三角洲位于山东省渤海湾南岸、莱州湾西岸,天然植被由耐盐草本和灌木组成,拥有发挥着重要碳储功能的滨海蓝碳生态系统,总面积12300 km2图2)。为丹顶鹤(Grus japonensis)、鹳、白琵鹭(Platalea leucorodia)等91种候鸟提供了越冬地、繁殖地和停歇生境,区内珍稀濒危鸟类40余种[30],鸟类种数占全国的1/5[31,32],是国际生物多样性保护重要湿地。现有1个国家自然保护区,下设一千二、黄河口、大汶流3个管理站,2个省级自然保护区,5个其他保护区和34个湿地公园(图2)。作为中国北方滨海湿地的典型代表,生态系统服务丰富、生产力和经济潜力高的同时,农业、海水养殖、石油开采和盐业等围垦开发工程导致滨海湿地大面积丧失、生物多样性下降、水体污染负荷加重[33],使得固碳、生境质量和水质净化三种滨海湿地典型且重要功能的生态效益不断丧失,从而加剧了黄河三角洲滨海湿地开发利用与生态保护间的矛盾,最终导致其生态屏障作用受损[34-36]
图2 黄河三角洲区位及土地利用分布

Fig. 2 Geographic position and land use map in the Yellow River Delta

Full size|PPT slide

用于土地利用转移情况分析、盐地碱蓬 [Suaeda salsa (L.) Pall.] 生长区确定和开展生态系统服务模拟的1976年与2015年细分盐沼植被类型土地利用空间分布数据集,由中国科学院东北地理与农业生态研究所生产[37]图2)。归一化植被指数(Normalized Difference Vegetation Index,NDVI)的计算基于地理空间数据云(https://www.gscloud.cn/)平台下载的Landsat 8遥感影像(2015年06月05日,空间分辨率30 m,云量0.15%)。高程数据使用了空间分辨率为90 m的SRTM(Shuttle Radar Topography Mission)(https://www.gscloud.cn/),研究通过格网DEM—等高线—不规则三角网的转化将其垂直精度由1 m降尺度为0.5 m,用于后续植被生境适宜性模拟。生态系统服务模拟用到的碳密度库、威胁信息表和生境敏感性评价表依据周方文等[38]的研究,各类植被的氮磷积累依据相关文献[39]

1.3 研究方法

1.3.1 确定潜在保护—修复格局

以现有土地利用类型中的自然湿地作为潜在保护区,确定潜在保护—修复格局的关键是潜在修复区的识别。首先通过分析1976—2015年的土地利用转移情况,明晰自然湿地的主要去向,即围填海等滨海土地利用导致滨海湿地类型性质改变,进而导致生态系统服务退化的区域(例如在原有自然湿地上建设港口、堤坝、盐田、养殖池,开垦农田和开发油田的区域)。而退养还滩和退盐还湿在政策与案例上均具有可行性及可参考性[40],因此在现状为盐田和养殖池的自然湿地受损区域内筛选植被群落的潜在修复生境。
选择黄河三角洲滨海盐沼湿地优势物种盐地碱蓬的生长适宜区作为修复目标生境。盐地碱蓬生长主要受土壤水分和盐度影响,二者和盐地碱蓬生物量的关系呈现高斯分布[41]。在盐地碱蓬的适生区内,水分和盐度与高程均在1%水平下呈显著的负相关[42]。因此将盐地碱蓬的分布与高程进行高斯拟合,利用高程预测盐地碱蓬的潜在生长区,确定盐地碱蓬的生态阈值,将预测得到生长适宜区作为潜在修复格局。高斯模型的表达式[41]为:
y=ce-(x-μ)22t2
(1)
式中:y为生物指标(多度、盖度、密度、生物量等);c为对应指标的最大值; e为自然常数;x为环境因子值; μ为植物种的环境因子最适值;t为该植物种的耐度,是描述植物种生态阈值的一个指标。植物种的生态阈值区间为 [ μ-2t, μ+2t],最适生态阈值区间为 [ μ-t, μ+t]。在研究中,黄河三角洲盐地碱蓬分布栅格数目N与高程分布呈现明显的高斯分布,lnN-DEM二次多项式拟合结果为:lnN= -0.2086×DEM 2+0.3851×DEM+7.6801(R2=0.9838),进而求得NDEM的高斯分布拟合曲线如图3
图3 盐地碱蓬分布频度与高程的高斯拟合结果

Fig. 3 The fitting results of distribution frequency of Suaeda salsa with their elevation by Gaussian modelling

Full size|PPT slide

1.3.2 确定保护—修复对象

研究模拟了潜在保护—修复格局下的滨海湿地典型且重要的三种生态系统服务(碳储存、生境质量和水质净化),在最大值标准化处理后,采用自然断点法重分类筛选出高值核心区,以该区域的生态系统服务作为保护—修复的对象应用于系统保护规划方法。
(1)碳储存功能模拟
生态系统将碳储存在植物、其他生物质和土壤中,把CO2固定在可以引起气候改变的大气之外,就实现了固碳功能。盐沼等滨海湿地在碳储存方面的效率非常高,这使得蓝碳碳汇成为滨海湿地最重要的生态系统服务之一。生态系统由四个基本碳库组成:地上、地下、土壤和凋落有机物碳库。依据已有研究[38]调查的碳密度库(表1),绘制潜在保护—修复格局下的碳储存功能空间分布。对于潜在修复区,将预测的生物量分布做最大值归一化处理后与均值之比作为校正系数校正碳密度。
表1 黄河三角洲细分植被类型碳库

Table 1 Carbon pool by vegetation type in Yellow River Delta (t/hm2)

土地利用类型 地上碳密度 地下碳密度 土壤碳库 凋落物有机碳
草地 5 2 15 0.3
城镇建设用地 0 0 12 0
淡水沼泽 17 8 15 0.6
港口 0 0 8 0
工业用地 0 0 12 0
海岸性盐水湖 2 1 27 0
旱田 9 4 25 0.3
河流 1.5 0.5 20 0
林地 31.4 6.9 24.5 0.2
裸地 0 0 17 0
旅游用地 0 0 12 0
水库坑塘 1 0.5 30 0
滩地 0.5 0 15 0
滩涂湿地 0.5 0 15 0
盐水沼泽(盐地碱蓬、芦苇) 4 2 17 0.3
盐水沼泽(盐地碱蓬、芦苇、柽柳) 6 2 20 0.2
盐水沼泽(芦苇) 14 7 15 0.6
盐水沼泽(芦苇、柽柳) 10 3 20 0.3
盐水沼泽(其他) 8 8 15 0.6
盐田 0 0 17 0
养殖池 0 0 17 0
潜在修复区 3 1 20 0.2
注:芦苇 [Phragmites australis (Cav.) Trin. ex Steu],柽柳(Tamarix chinensis Lour.)。
(2)生境质量模拟
依托InVEST模型的生境质量模块(Habitat Quality),通过生态威胁因子的影响程度、生态威胁因子的最大影响距离、生境对于生态威胁因子的敏感程度以及法律保护情况与保护区的设立等因素,来考量生境退化和生境质量。具体而言,以保护濒危物种黑嘴鸥(Larus saundersi)和丹顶鹤的生境为目标,考虑不同用地类型的生境适宜性及对生态威胁因子建设用地、养殖池、农田、盐田的生境敏感性(表2[38],进行黄河三角洲生境质量的模拟。模拟结果中,生境质量高的区域将更好地支持生物多样性,反之则意味着生物多样性持久性、弹性、恢复性的降低。
表2 生境适宜性及生境对各威胁因子的敏感度参数

Table 2 Habitat suitability and habitat sensitivity parameters

土地利用 生境适宜性 生境对各威胁因子的敏感度参数
养殖池 盐田 建设用地 农田
草地 1 0 0.4 0 0.8
林地 1 0 0.5 0.2 0.1
农田 0 0.2 0.6 0.4 1
盐田 0 0 0 0 0
湿地 1 0.9 0.6 0.9 0.8
水体 1 0.7 0 0.1 0
裸地 0 0 0 0 0
建设用地 0 0.5 0 0 0
(3)水质净化模拟
滨海湿地生态系统通过物理、化学和生物协同作用,以吸附、吸收、过滤和降解等方式实现对含氮、磷污染水体的高效净化。水质净化功能模拟用于评估区域生态系统截留、消减水体营养物质的能力。研究采用黄河三角洲优势湿地植被芦苇、盐地碱蓬和柽柳对氮、磷的累积能力作为衡量湿地的水质净化功能的指标。氮、磷积累量为植被生物量与氮、磷含量之积(表3),各植被i净化能力指数 Wi的计算方法为:
Wi=Nii=1nNi+Pii=1nPi
(2)
Aj=Wi×NDVIj
(3)
式中:植被i的氮累积量为 Ni(g/m2);磷累积量为 Pi(g/m2);n为植被类型数目(类)。特别地,研究使用NDVI表征生物量,而对于同一植被类型来说,植被氮磷含量取均值的情况下,氮磷积累量与生物量呈线性关系,因此选择NDVI为修正系数得到每个栅格j的植被净化能力指数 Aj
表3 植被氮磷积累相关数据[39]

Table 3 The data of the plant nitrogen (N) and phosphorus (P) accumulation[39]

芦苇 盐地碱蓬 柽柳
氮含量/(mg/g) 地上 11.5 7 14.5
地下 5.5 5 9
磷含量/(mg/g) 地上 1.1 0.9 1.5
地下 1 1.5 1
生物量/(g/m2) 1400 500 1000

1.3.3 利用系统保护规划方法确定最优保护—修复格局

依托系统保护规划理论经典模型Marxan[43,44],优化基于多生态系统服务提升的一体化保护—修复格局,该一体化保护—修复优化格局能以最小的代价(保护—修复的经济成本)最大程度地发挥滨海湿地生态系统服务。采用1 km网格为规划单元,保护—修复对象为三类生态系统服务的高值核心区。因生境质量、滨海蓝碳及水质净化均为黄河三角洲滨海湿地关键生态系统服务,在本文中视为同等重要并设定一致的重要性参数。重要性参数的设置可依据保护修复规划的需求进行差异化设定。此外,设置30%~80%以10%为梯度的6个保护和修复目标比例。
保护—修复的经济成本包括机会成本和工程成本。采取“保护”措施的生境,生境类型维持不变,其机会成本即为成本。对于保护区外的湿地,湿地不能再被用作经济活动,机会成本即湿地被用作经济活动的利润,理论上应采用该范围内经济价值最高的经济开发活动的利润;对于保护区内湿地,其经济开发利用受到法规约束,在此设置为0元。采取“修复”措施的生境会导致土地利用类型的改变,即围填海活动撤出并将其修复为湿地,直接损失的经济利润即为湿地修复的机会成本,退养还湿的机会成本对应了养殖的经营利润,退盐还湿的机会成本对应了盐田的经营利润;此外,湿地修复是人为干预,需考虑其工程成本。经过文献和年鉴的数据收集[45,46],计算得到退养还滩的机会成本为1822.3万元/km2,退盐还湿的机会成本为45.5万元/km2。经过调研,研究参考黄河三角洲2010—2014年已有的湿地修复项目工程成本,以620万元/km2作为实际工程成本。
使用BLM(Boundary Length Modifer,边缘长度调节)模块调节格局的聚集度。对于各保护—修复目标水平,均设置能够反映成本代价和边界长度变化趋势的BLM值,在Marxan中分别输入这些BLM值,再利用模拟退火算法优化得到每个BLM对应的最优边界长度—成本组合。通过聚集度与保护成本之间的敏感性分析确定各目标水平下兼顾湿地修复格局聚集性和修复成本的最适BLM值及对应的最优保护—修复格局。进而在最适BLM下对保护目标水平及对应的成本和聚集性做敏感性分析,确定最优保护—修复目标水平及格局。

2 结果分析

2.1 潜在保护—修复格局

由1976—2015年土地利用转移(图4)可知,黄河三角洲土地利用转变复杂,自然湿地面积大幅减少,主要转化为旱地、养殖池和盐田,其中32.18%的滩涂、34.71%的沼泽转变为养殖池,12.42%的沼泽转变为盐田。由于养殖和盐田是研究区占用自然湿地面积最大的围填海形式,且已在此成功开展了一些生态修复工程,因此研究将养殖和盐田作为潜在恢复区的基本类型。
图4 黄河三角洲1976—2015年土地利用转移面积及土地利用潜在保护—修复格局

Fig. 4 Land use transformation and the potential land use pattern for conservation and restoration in the Yellow River Delta during 1976-2015

Full size|PPT slide

盐地碱蓬在研究区内分布的高程范围基本在0~5 m,出现频度随DEM变化呈现出明显的高斯分布。依据高斯拟合结果(图3)可知,盐地碱蓬的最适生态阈值区间为 [-0.6251, 2.4713]/m。将盐田和养殖池范围内的盐地碱蓬最适区间作为其潜在修复区,总面积达1755.14 km2,现有生境中的自然湿地(淡水沼泽、咸水沼泽、滩涂、海岸性盐水湖)作为潜在保护区,二者共同组成潜在保护—修复格局(图4)。

2.2 保护—修复对象模拟结果

潜在保护—修复格局下的黄河三角洲碳储存、生境质量和水质净化功能模拟结果经最大值标准化处理后如图5。碳储存在黄河三角洲国家级自然保护区和黄河故道周边最高,潜在修复区次之。东部的国家级湿地保护区、北部的黄河故道为生境质量相对较高的区域,较适宜丹顶鹤和黑嘴鸥生存,而工业用地等大部分人工环境都不适宜丹顶鹤和黑嘴鸥生存。水质净化功能在潜在修复区高于国家级湿地保护区,可见黄河三角洲的水质净化功能具有很大的修复潜力。
图5 黄河三角洲碳储存、生境质量、水质净化生态系统服务空间格局分布

Fig. 5 Spatial pattern of multiple ecosystem services (i.e., carbon storage, habitat quality and water purification) in the Yellow River Delta

Full size|PPT slide

利用自然断点法对3类生态系统服务模拟结果进行分级,依据各级栅格数所占比例,筛选碳存储5级(占比29%)、生境质量5级(占比25%)和水质净化5级(占比15%)为生态系统服务的高值核心区,作为后续利用Marxan进行不同保护—修复比例优化时的对象。

2.3 最优保护—修复目标水平及一体化保护—修复格局

在临近拐点处加密设置了BLM的值,边界长度和经济成本的敏感性分析如图6a。边界长度随成本变化的曲线存在明显的突变点。随着成本的增加,边界长度均先快速下降后平稳变化,因此突变点处为聚集度最适值,不同保护—修复比例突变点对应的BLM图6a,分别是1200、1800、700、900、800和400。
图6 不同保护—修复目标水平下(20%~80%)聚集度敏感性分析,保护—修复目标水平、成本和边界长度敏感性分析和最优目标水平下的保护—修复格局

Fig. 6 Sensitivity analysis of aggregation degree, conservation-restoration proportion, cost and boundary length under the conservation-restoration target level ranging from 20% to 80% and conservation-restoration pattern under optimal proportion

Full size|PPT slide

在各保护—修复目标水平下,最适BLM值对应的最优成本—边界长度组合的变化曲线如图6b。由图6b可知,随着保护—修复比例增加,成本和边界长度整体都呈现增长趋势,其中边界长度的增速较为稳定;而在40%~50%保护—修复目标水平期间,成本的增速变缓,由1.94亿元增长至2.09亿元;大于50%后成本快速增加至2.86亿元,而后分别是3.59亿元和4.08亿元,因此选择50%作为最适保护—修复目标水平。如图6c,最优保护—修复格局保护和修复的面积达1577.58 km2,应保护面积占89%。另外,在黄河三角洲国家级自然保护区内,应保护面积也占89%,这可能是由于保护区内湿地保护的成本低而生态系统服务高,同时表明本文研究成本代价和保护修复目标设计的合理性。

3 结论与讨论

3.1 结论

本文以黄河三角洲滨海湿地为例,将湿地保护与修复格局统一到湿地生态系统服务提升构架下,创新性地发展了一套一体化保护—修复格局构建及优化方法。根据研究结果得到以下结论:
(1)养殖和盐田是黄河三角洲占用自然湿地面积最大的围填海形式,且已在此开展了一些生态修复工程,本文将养殖和盐田作为潜在恢复区是具有修复可行性的。利用高斯模型拟合确定的黄河三角洲优势种盐地碱蓬的最适生态阈值高程区间为 [-0.6251, 2.4713]/m,潜在修复区的面积达1755.14 km2
(2)本文将碳存储前29%、生境质量前25%和水质净化前15%所在的生态系统服务高值核心区作为保护—修复优化的对象。碳储存和生境质量在黄河三角洲国家级自然保护区和黄河故道周边较高,水质净化功能在潜在修复区较高。
(3)保护和修复50%的生态系统服务核心区形成的一体化保护—修复格局是以最小的成本实现黄河三角洲生态系统服务最大化的最优格局,保护修复成本为2.09亿元,面积为1577.58 km2,应保护面积占比为89%。应保护区与国家级保护区高度重合,验证了本文设置的成本代价和保护修复对象及目标较为合理。在退养还滩、退盐还湿等滨海湿地修复工程区,土地利用类型单一,修复成本基本一致,其修复可行性主要取决于高程和潮沟水系格局,同时保护区内湿地保护的成本低而生态系统服务高。因此BLM权衡结果偏向于较高聚集度,同时围绕已有保护格局聚集。
(4)应用系统保护规划方法,考虑保护—修复潜在格局下典型生态系统服务的代表性、互补性以及连通性等,权衡生态功能发挥与保护现有湿地和修复潜在湿地的经济成本代价,从而确定一体化保护—修复格局及最优目标的方法体系可以推广。

3.2 各保护—修复目标水平下保护—修复策略的优先性

保护—修复的策略分为就地保护以及针对潜在修复区原利用方式的退养还滩修复和退盐还湿修复,在与现有保护区叠加后得到6类具体的保护—修复策略(图7)。从保护—修复策略的整体分布看,所有目标水平下的最优保护—修复区均围绕已有保护区聚集,30%~50%目标水平的零散斑块以自然湿地斑块为主,60%~80%则会包括一些分散分布的盐田和养殖池。
图7 黄河三角洲不同保护—修复目标水平下(30%~80%)实施策略

Fig. 7 The implementation strategies to integrate conservation and restoration patterns under different target levels (30%-80%) in the Yellow River Delta

Full size|PPT slide

随着保护—修复目标水平的提高,各保护—修复策略的优先性存在明显差异(图7)。保护区内的保护、退养还滩、退盐还湿的面积都基本不变,这说明目前已有保护区的保护作用较为有效,基于此,需要优先考虑将保护区内现存的养殖池和盐田撤出,实施保护区内的退养还滩和退盐还湿工程。对于保护区外,保护、退养还滩、退盐还湿都呈现明显的增加趋势。而保护面积始终大于退养还滩和退盐还湿的面积,因此保护区外的保护优先性大于退养还滩和退盐还湿。依据各保护—修复策略对应的面积确定保护区外各保护—修复策略的优先性:当目标水平≤50%时,保护>退养还滩>退盐还湿;当50%<目标水平<60%时,保护>退养还滩=退盐还湿;当目标水平≥60%时,保护>退盐还湿>退养还滩。
具体的保护—修复策略为:30%~80%的目标水平下均应首先保护现有保护区内的1130 km2的自然湿地。随后,均应将保护区外部周边尚未被保护的自然湿地作为未来的保护区,涉及的自然湿地包括东营市龙悦湖及其周边湿地、昌邑市虞河入海口东侧湿地、保护区北部油田中的退化湿地、烟台市寒亭区白浪河入海口东部湿地、黄河入海口南部防潮堤外未纳入保护区的部分湿地、滨州市沾化区徒骇河入海口东侧滨海湿地、烟台市莱州市的三山岛街道和金城镇的沿海区域等。而后,30%~70%的目标水平下应将保护区内仍然存在的约110 km2的养殖池作为退养还滩修复区。50%和60%时应修复一千二的西部滨海区域以及黄河口保护区正南部边界附近的43 km2的养殖池;还包括黄河口保护区内的少量盐田。70%和80%时应修复保护区外的约100 km2的养殖池,主要位于一千二的西部滨海区域,黄河口保护区正南部边界附近,以及潍坊市寒亭区老河口附近和东营市广饶县丁庄镇的小清河与支脉河之间;还包括黄河口保护区边界内的少量盐田和南部边界外的约160 km2左右的盐田,主要分布于潍坊市寒亭区的老河口附近、昌邑市潍河西侧和烟台市莱州市的北郊莱河东侧。

3.3 “一体化保护—修复”格局构建及优化方法的意义和适用性

“一体化保护—修复”格局构建及优化方法是对以往局限于小尺度、孤立的湿地修复格局的反思,也是将湿地修复提升到区域生态安全层面的理论探索与实践探索。在以生态系统服务提升为目标的保护—修复格局构建及优化过程中,两者格局不再彼此孤立,而是借助Marxan的“退火”优化算法实现内在格局优化整合,使区域滨海湿地生态系统服务得到整体性补偿和改善。通过不同保护—修复目标水平的优化格局与当前湿地保护区的叠加分析,可以确定游离于保护体系外的保护空缺;同时与湿地修复潜在区域相匹配,可以确定优先修复区域及其相应措施。该一体化保护—修复格局识别方法是对依据生态廊道理论识别和确定国土空间生态保护修复关键区域成果[47,48]的有效补充。总之,一体化保护—修复格局通过对保护、修复空间单元的保护效益—价值成本不断权衡,可实现整体优化,有助于科学划定生态“保护红线”和“修复绿线”[28]。在此基础上,前瞻性地保留滨海湿地应对气候变化的弹性空间[49],科学划定“应对气候变化的蓝线”,构筑红绿蓝“三线整合”的中国滨海湿地生态安全格局,是应对围垦开发和气候变化双重胁迫下更加全面、可持续的生态安全管理策略[28]。同时,滨海区域可采取“滚动”开发模式,在保障滨海湿地生态系统格局与功能完整性的同时,维持保护与利用间动态平衡[50]
本文仍存在部分不足,有待后续深入研究探讨:(1)仅选取黄河三角洲三类具有典型性及重要性的生态系统服务,在未来的研究中可以进一步扩展生态系统服务的类型,以充分体现多功能协同治理的理念。(2)研究设置的保护区内外湿地保护的机会成本为0,原因在于自然湿地在保护措施实施前后均能够提供游憩、文化服务的功能,这类功能并未被放弃;也应看到由于保护措施的实施,因生态优先考虑会使得滨海湿地丧失一部分游憩、文化服务功能产生的经济价值。因此,在今后的研究中,这部分价值差也应该考虑在内。此外,随着山东省围填海整改的深入,退盐、退渔和退耕的补偿成本也应逐渐考虑在内。(3)黄河三角洲具有典型的潮沟地貌形态和丰富的湿地植被类型,水文连通性对植被分布和生态保护—修复措施能否成功实施影响较大。因此,后续研究将进一步丰富植被群落潜在修复区识别,如淡水沼泽及混生群落等,并充分考虑水文连通性对一体化保护—修复工程实施的影响。

参考文献

[1]
DEEGAN L A, JOHNSON D S, WARREN R S, et al. Coastal eutrophication as a driver of salt marsh loss. Nature, 2012, 490(7420): 388-392.
[2]
RICHARDS D R, THOMPSON B S, WIJEDASA L. Quantifying net loss of global mangrove carbon stocks from 20 years of land cover change. Nature Communications, 2020, 11(1): 4260, Doi: 10.1038/s41467-020-18118-z.
Mangrove forests hold some of the highest densities of carbon recorded in any ecosystem, but have experienced widespread deforestation through conversion to aquaculture and agriculture. Alongside deforestation, mangroves have shown simultaneous natural expansion in some parts of the world, and considerable investments have been made into restoration programmes. Here we estimate net changes in the global mangrove carbon stock due to land cover change between 1996 and 2016, using data on mangrove deforestation and forestation, and proportional changes in carbon stock during processes of mangrove loss and gain. The global mangrove carbon stock declined by 158.4 Mt (95% CI = -156.8-525.9 Mt); a reduction of 1.8% of the stock present in 1996. Efforts to conserve and restore mangroves appear to have had some success, and - along with natural forestation - have contributed to relatively low net losses of mangrove carbon stocks over two decades.
[3]
MURRAY N J, PHINN S R, DEWITT M, et al. The global distribution and trajectory of tidal flats. Nature, 2019, 565(7738): 222-225.
[4]
KRUMHANSL K A, OKAMOTO D K, RASSWEILER A, et al. Global patterns of kelp forest change over the past half-century. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 13785-13790.
[5]
LIU Z, CUI B, HE Q. Shifting paradigms in coastal restoration: Six decades' lessons from China. Science of the Total Environment, 2016, 566: 205-214.
[6]
HALPERN B S, SILLIMAN B R, OLDEN J D, et al. Incorporating positive interactions in aquatic restoration and conservation. Frontiers in Ecology and the Environment, 2007, 5(3): 153-160.
[7]
MORENO-MATEOS D, POWER M E, COMÍN F A, et al. Structural and functional loss in restored wetland ecosystems. Journal of Structural Biology, 2012, 10(1), Doi: 10.1371/journal.pbio.1001247.
[8]
DETHIER M N, TOFT J D, SHIPMAN H. Shoreline armoring in an inland sea: Science-based recommendations for policy implementation. Conservation Letters, 2017, 10(5): 626-633.
[9]
PRESSEY R L, COWLING R M. Reserve selection algorithms and the real world. Conservation Biology, 2001, 15(1): 275-277.
[10]
MARGULES C R, PRESSEY R L. Systematic conservation planning. Nature, 2000, 405(6783): 243, Doi: 10.1111/fme.12236.
Systematic conservation planning (SCP) is a promising tool underpinned by the idea that multistakeholders’ needs should be considered in any conservation action. However, there is almost no research verifying whether those proposed solutions indeed capture local people's needs. In this article, a SCP exercise was developed in the Pantanal wetland, Brazil, to propose a possible new negotiated solution for environmental protection areas and fisheries zone. To test the validity of the SCP‐delivered solutions, physical maps showing them were presented and discussed with local people. None of the proposed possible SCP scenarios was accepted locally as workable. The fixed solutions proposed by SCP do not map onto the spatial–temporal flexibility of floodplain fisheries. Current, SCP approaches seem far from being able to incorporate the livelihood uncertainties of floodplain fisheries into mathematical models in a way that encompasses people's needs and, therefore remains only a theoretical tool for sustainability.
[11]
PRESSEY R L, CABEZA M, WATTS M E, et al. Conservation planning in a changing world. Trends in Ecology & Evolution, 2007, 22(11): 583-592.
[12]
梁晨, 李晓文, 崔保山, 等. 中国滨海湿地优先保护格局构建. 湿地科学, 2015, 13(6): 660-666.
[LIANG C, LI X W, CUI B S, et al. Construction of priority conservation pattern of coastal wetlands in China. Wetland Science, 2015, 13(6): 660-666.]
[13]
郭云, 梁晨, 李晓文. 基于系统保护规划的黄河流域湿地优先保护格局. 应用生态学报, 2018, 29(9): 3024-3032.
摘要
黄河流域湿地为我国生物多样性维持提供了重要生境.本研究基于黄河流域气候分区、地貌单元及湿地遥感数据,构建黄河流域生态地理综合湿地分类系统.在系统保护规划理论框架下,将湿地气候-地貌分类单元作为生态系统层次保护对象,结合黄河流域鸟类分布范围作为物种层次的保护对象,设定30%湿地优化目标,将公路、铁路、城镇、农村居民点、水坝等作为度量因子创建黄河流域保护代价图层,并利用系统保护规划工具&mdash;&mdash;Marxan软件构建黄河流域湿地保护优化格局,识别湿地保护空缺.结果表明: 黄河流域大部分沼泽湿地集中在黄河上游区域,目前源区保护区覆盖面积大,在内蒙古、甘肃及四川部分区域一些稀有湿地类型游离在保护体系外;黄河中游湿地类型以河道和河滩湿地类型为主,保护覆盖率极低,保护空缺严重,经优化保护网络体系后,保护成效可分别得到29.1%、37.6%的提升.黄河下游湿地主要集中在黄河三角洲区域,目前保护体系完整,保护空缺面积极小.总体上,黄河流域中游河流湿地的保护空缺比例最高,亟需重视.本研究基于湿地保护格局优化结果分区分析黄河流域湿地保护模式,为黄河流域湿地的保护规划管理提供了科学性建议,从宏观层面上为黄河流域水生态保护奠定了基石.
[GUO Y, LIANG C, LI X W. Priority conservation pattern of wetlands in the Yellow River Basin based on systematic conservation planning. Chinese Journal of Applied Ecology, 2018, 29(9): 3024-3032.]
Yellow River basin is a significant habitat for biodiversity conservation in China. Here, we established a integrated classification system of wetlands based on climate types and geomorphological units, with which as the coarse-filter surrogates of biodiversity elements to complement the fine-filter surrogates of distribution of focal bird species. Then, we applied the theoretical framework of systematic conservation planning (SCP), with those two biodiversity surrogates as protection objects and watershed as planning units. We calculated social and economic costs (including roads, railroads, towns, rural settlements, dams) and set targets of 30% to input Marxan to figure out the optimal set of planning units, which met the protection target with the minimum of social economy cost and land resources. We identified a conservation priority pattern by calculating the irreplaceability of each unit by Marxan. Then, we compared the priority pattern with the existing reserve system to analyze conservation gap in the Yellow River basin. The results showed that most marsh wetlands were concentrated in the upper reaches of the Yellow River. The coverage of reserves in the source area was large. Some rare wetland types in Inner Mongolia, Gansu and Sichuan were separated from the protection system. The main wetland types in the middle reaches of the Yellow River were riverine wetlands, with low protection coverage rate and large conservation gaps. After protection network system being optimized, the protection effect was improved by29.1%-37.6%. The wetland in the lower reaches of the Yellow River was mainly concentrated in the Yellow River Delta area. The protection system was good and the conservation gaps was small. Overall, riverine wetlands in the middle reaches of the Yellow River basin had the highest area proportion of conservation gaps which needed more attention. Based on the priority conservation pattern, our results provided scientific suggestions for the protection planning and management of wetlands in the Yellow River basin, which would lay a foundation for the water ecological protection of the Yellow River basin from the macro scale.
[14]
WILSON K A, MCBRIDE M F, BODE M, et al. Prioritizing global conservation efforts. Nature, 2006, 440(7082): 337-340.
[15]
LINKE S, TURAK E, NEL J. Freshwater conservation planning: The case for systematic appraches. Freshwater Biology, 2010, 56(1): 6-20.
[16]
HERMOSO V, LINKE S, PRENDA J, et al. Addressing longitudinal connectivity in the systematic conservation planning of fresh waters. Freshwater Biology, 2011, 56(1): 57-70.
[17]
SCHLEUPNER C, SCHNEIDER U A. Allocation of European wetland restoration options for systematic conservation planning. Land Use Policy, 2013, 30(1): 604-614.
[18]
LANGHANS S D, HERMOSO V, LINKE S, et al. Cost-effective river rehabilitation planning: Optimizing for morphological benefits at large spatial scales. Journal of Environmental Management, 2014, 132: 296-303.
River rehabilitation aims to protect biodiversity or restore key ecosystem services but the success rate is often low. This is seldom because of insufficient funding for rehabilitation works but because trade-offs between costs and ecological benefits of management actions are rarely incorporated in the planning, and because monitoring is often inadequate for managers to learn by doing. In this study, we demonstrate a new approach to plan cost-effective river rehabilitation at large scales. The framework is based on the use of cost functions (relationship between costs of rehabilitation and the expected ecological benefit) to optimize the spatial allocation of rehabilitation actions needed to achieve given rehabilitation goals (in our case established by the Swiss water act). To demonstrate the approach with a simple example, we link costs of the three types of management actions that are most commonly used in Switzerland (culvert removal, widening of one riverside buffer and widening of both riversides) to the improvement in riparian zone quality. We then use Marxan, a widely applied conservation planning software, to identify priority areas to implement these rehabilitation measures in two neighbouring Swiss cantons (Aargau, AG and Zürich, ZH). The best rehabilitation plans identified for the two cantons met all the targets (i.e. restoring different types of morphological deficits with different actions) rehabilitating 80,786 m (AG) and 106,036 m (ZH) of the river network at a total cost of 106.1 Million CHF (AG) and 129.3 Million CH (ZH). The best rehabilitation plan for the canton of AG consisted of more and better connected sub-catchments that were generally less expensive, compared to its neighbouring canton. The framework developed in this study can be used to inform river managers how and where best to spend their rehabilitation budget for a given set of actions, ensures the cost-effective achievement of desired rehabilitation outcomes, and helps towards estimating total costs of long-term rehabilitation activities. Rehabilitation plans ready to be implemented may be based on additional aspects to the ones considered here, e.g., specific cost functions for rural and urban areas and/or for large and small rivers, which can simply be added to our approach. Optimizing investments in this way will ultimately increase the likelihood of on-ground success of rehabilitation activities. Copyright © 2013 Elsevier Ltd. All rights reserved.
[19]
ADAME M F, HERMOSO V, PERHANS K, et al. Selecting cost‐effective areas for restoration of ecosystem services. Conservation Biology, 2015, 29(2): 493-502.
[20]
朱书玉, 王伟华, 王玉珍, 等. 黄河三角洲自然保护区湿地恢复与生物多样性保护. 北京林业大学学报, 2011, 33(s2): 1-5.
[ZHU S Y, WANG W H, WANG Y Z, et al. Wetland restoration and biodiversity conservation in Yellow River Delta Nature Reserve. Journal of Beijing Forestry University, 2011, 33(s2): 1-5.]
[21]
熊瑶, 杨云峰. 天然类城市湿地恢复与重建策略: 以芜湖大阳垾湿地公园建设为例. 林业科技开发, 2014, 28(1): 133-138.
[XIONG Y, YANG Y F. Restoration and reconstruction strategy of natural urban wetlands: A case study of the construction of Wuhu Dayangyuan Wetland Park. Forestry Science and Technology Development, 2014, 28(1): 133-138.]
[22]
沈守云, 曾华浩, 王薇薇. 国际重点湿地: 湖北洪湖湿地生态恢复规划探索. 中国园林, 2009, 25(2): 46-50.
[SHEN S Y, ZENG H H, WANG W W. International key wetland: Ecological restoration planning of Honghu Wetland in Hubei province. Chinese Landscape Architecture, 2009, 25(2): 46-50.]
[23]
葛振鸣, 周晓, 王开运, 等. 受损湖泊湿地生态修复规划与效益分析: 以上海西郊湿地为例. 生态经济, 2009, 25(4): 30-36.
[GE Z M, ZHOU X, WANG K Y, et al. Planning and benefit analysis of ecological restoration of damaged lakes wetlands: A case study of wetlands in the western suburbs of Shanghai. Ecological Economy, 2009, 25(4): 30-36.]
[24]
吴后建, 王学雷. 中国湿地生态恢复效果评价研究进展. 湿地科学, 2006, 4(4): 304-310.
[WU H J, WANG X L. Research progress on evaluation of wetland ecological restoration effect in China. Wetland Science, 2006, 4(4): 304-310.]
[25]
李晓文, 李梦迪, 梁晨, 等. 湿地恢复若干问题探讨. 自然资源学报, 2014, 29(7): 1257-1269.
[LI X W, LI M D, LIANG C, et al. Discussion on some issues of wetland restoration. Journal of Natural Resources, 2014, 29(7): 1257-1269.]
[26]
POSSINGHAM H P, BODE M, KLEIN C J. Optimal conservation outcomes require both restoration and protection. PLoS Biology, 2015, 13(1), Doi: 10.1371/journal.pbio.1002052.
[27]
WIENS J A, HOBBS R J. Integrating conservation and restoration in a changing world. BioScience, 2015, 65(3): 302-312.
[28]
李晓文, 智烈慧, 马田田, 等. 构筑基于“三线整合”的中国滨海湿地生态安全格局. 中国科学院院刊, 2023, 38(1): 123-133.
[LI X W, ZHI L H, MA T T, et al. Constructing the ecological security pattern of coastal wetlands in China based on "three-line integration". Bulletin of Chinese Academy of Sciences, 2023, 38(1): 123-133.]
[29]
李晓文, 吕江涛, 智烈慧, 等. 基于“目标—成本—效益”协同优化的山水林田湖草沙一体化生态保护与修复格局. 生态学报, 2023, 43(9): 3625-3635.
[LI X W, LYU J T, ZHI L H, et al. Integrated ecological protection and restoration pattern of landscape, water, forest, field, lake, grass and sand based on "goal-cost-benefit" collaborative optimization. Acta Ecological Sinica, 2023, 43(9): 3625-3635.]
[30]
许学工, 林辉平, 付在毅, 等. 黄河三角洲湿地区域生态风险评价. 北京大学学报: 自然科学版, 2001, 37(1): 111-120.
[XU X G, LIN H P, FU Z Y, et al. Regional ecological risk assessment of wetlands in the Yellow River Delta. Acta Scientiarum Naturalium Universitatis Pekinensis, 2001, 37(1): 111-120.]
[31]
张希画. 1998—2008年黄河三角洲黑嘴鸥繁殖种群数量及其繁殖生境动态变化. 山东林业科技, 2012, 42(3): 12-15, 5.
[ZHANG X H. Breeding population and breeding habitat dynamics of black-billed gulls in the Yellow River Delta, 1998-2008. Journal of Shandong Forestry Science and Technology, 2012, 42(3): 12-15, 5.]
[32]
王彬. 基于CVM的黄河三角洲湿地生态系统服务价值评估研究. 青岛: 青岛大学, 2010.
[WANG B. Research on ecosystem service value evaluation of wetlands in Yellow River Delta based on CVM. Qingdao: Qingdao University, 2010.]
[33]
陈建, 王世岩, 毛战坡. 1976—2008年黄河三角洲湿地变化的遥感监测. 地理科学进展, 2011, 30(5): 585-592.
[CHEN J, WANG S Y, MAO Z P. Remote sensing monitoring of wetland changes in the Yellow River Delta from 1976 to 2008. Progress in Geography, 2011, 30(5): 585-592.]
[34]
MA T T, LI X W, BAI J H, et al. Four decades' dynamics of coastal blue carbon storage driven by land use/land cover transformation under natural and anthropogenic processes. Science of the Total Environment, 2018, 655: 741-750.
[35]
宋红丽, 刘兴土. 围填海活动对我国河口三角洲湿地的影响. 湿地科学, 2013, 11(2): 297-304.
[SONG H L, LIU X T. Effects of land reclamation activities on wetlands in estuarine delta in China. Wetland Science, 2013, 11(2): 297-304.]
[36]
MA T T, LI X W, BAI J H, et al. Tracking three decades of land use and land cover transformation trajectories in China's large river deltas. Land Degradation & Development, 2019, 30: 799-810.
[37]
陈琳, 任春颖, 王灿, 等. 6个时期黄河三角洲滨海湿地动态研究. 湿地科学, 2017, 15(2): 179-186.
[CHEN L, REN C Y, WANG C, et al. Dynamics of coastal wetlands in the Yellow River Delta during six periods. Wetland Science, 2017, 15(2): 179-186.]
[38]
周方文, 马田田, 李晓文, 等. 黄河三角洲滨海湿地生态系统服务模拟及评估. 湿地科学, 2015, 13(6): 667-674.
[ZHOU F W, MA T T, LI X W, et al. Simulation and assessment of ecosystem services of coastal wetlands in the Yellow River Delta. Wetland Science, 2015, 13(6): 667-674.]
[39]
张森, 刘福德, 刘庆, 等. 黄河三角洲不同湿地群落氮磷化学计量特征及其生境适应策略. 生态学杂志, 2015, 34(11): 2983-2989.
摘要
选取黄河三角洲滨海湿地盐地碱蓬(Suaeda salsa)、芦苇(Phragmites australis)和柽柳(Tamarix chinensis)3种典型植物群落为研究对象,研究了土壤植物N、P元素的空间分布格局及N/P化学计量学特征。结果表明: 盐地碱蓬地上部分N含量,地下部分N、P含量均小于芦苇和柽柳群落,柽柳地上部分P含量、N/P值均大于芦苇和盐地碱蓬群落。3种典型湿地群落N含量均呈现出地上部分大于地下部分的规律,说明植物会将有限的氮资源优先分配给地上部分光合器官;盐地碱蓬与柽柳地上和地下部分磷含量变化趋势相反,这种差异说明处在不同群落演替阶段的植物生活史策略不同。与木本植物柽柳不同,草本植物芦苇和盐地碱蓬N/P均表现出地上部分大于地下部分的特征,这与草本植物地上部分相对生长速率较大有关。土壤中N含量、N/P垂直变化趋势一致,均随着土层深度的增加而显著降低,但土壤磷的垂直变化特征不明显。相关分析显示,土壤(源)植物(库)之间N、P相关性较弱,说明除了土壤条件,滨海湿地氮磷化学计量格局还与植物自身的生理调节有关。
[ZHANG S, LIU F D, LIU Q, et al. Stoichiometry characteristics of nitrogen and phosphorus in different wetland communities in the Yellow River Delta and habitat adaptation strategies. Chinese Journal of Ecology, 2015, 34(11): 2983-2989.]
In order to study the spatial distribution patterns of nitrogen (N) and phosphorus (P) and the stoichiometric characteristics of three typical plant communities (<em>Suaeda salsa</em>, <em>Phragmites australis</em> and <em>Tamarix chinensis</em>) of coastal wetlands in the Yellow River Delta, soil and plant samples were collected. The results showed that the contents of aboveground N and underground N and P of <em>S. salsa</em> were lower than those of <em>P. australis</em> and <em>T. chinensis</em>, while the aboveground P content and N/P ratio of <em>T. chinensis</em> were higher than those of <em>P. australis</em> and <em>S. salsa</em>. For the three wetland communities, the N content of aboveground biomass was significantly higher than that of underground biomass, indicating that N tended to be allocated to the aboveground photosynthetic organ in the Nlimited habitat. However, an opposite trend existed for the P contents of above and underground biomass of <em>T. chinensis</em> and <em>S. salsa</em>, which revealed that species in different successional status would adopt different strategies to adapt to various environments. Unlike the woody species <em>T. chinensis</em>, the aboveground biomass of <em>P. australis</em> and <em>S. salsa</em> had higher N/P ratios than the underground biomass, and this was possibly related to the high relative growth rate of the aboveground organs of herbaceous species. The soil N content and N/P ratio decreased with&nbsp; the soil depth increasing, while no obvious changes of soil P were found along the vertical soil profile. The weak correlations </br>&nbsp;between the top soil (source) and the plant organs (pool) suggested that physiological accommodation of coastal wetland plants played some roles in N/P stoichiometric regulation besides soil conditions.
[40]
山东省人民政府. 关于公布《山东省海洋功能区划》的通知. http://www.shandong.gov.cn/art/2005/10/8/art_2477_219681.html, 2005-10-08.
[People's Government of Shandong Province. Notice on the publication of the "Marine Functional Zoning of Shandong Province". http://www.shandong.gov.cn/art/2005/10/8/art_2477_219681.html, 2005-10-08.]
[41]
崔保山, 贺强, 赵欣胜. 水盐环境梯度下翅碱蓬 (Suaeda salsa) 的生态阈值. 生态学报, 2008, 28(4): 1408-1418.
[CUI B S, HE Q, ZHAO X S. Ecological threshold of Suaeda salsa under a water-salt environmental gradient. Acta Ecological Sinica, 2008, 28(4): 1408-1418.]
[42]
吴春生, 黄翀, 刘高焕, 等. 黄河三角洲土壤含盐量空间预测方法研究. 资源科学, 2016, 38(4): 704-713.
摘要
土壤盐分对农业发展和土地生产力有很大影响,土壤盐碱化会降低耕地质量并造成土地退化,及时了解区域内土壤盐分含量及空间分布很有必要。地理加权回归是一种局部回归预测方法,其利用主变量与环境要素的相关关系,根据空间位置和距离特点,实现主变量的空间扩展。本研究目的即是探索地理加权回归在土壤盐分空间插值中的可用性,并与多元线性回归和协同克里格作对比来检验其精度。地理加权回归模型构建所选择的环境变量包括NDVI,高程和距河流距离。研究结果显示,地理加权回归在土壤盐分空间扩展中效果较好,精度优于其他两种方法(均方根误差为0.305,相关系数为0.649,决定系数为0.421),该方法降低了协同克里格插值的平滑效应,又比多元线性回归结果具有更多的空间细节展示,故本研究认为地理加权回归是一种较好的土壤盐分插值方法。
[WU C S, HUANG C, LIU G H, et al. Spatial prediction method of soil salinity in the Yellow River Delta. Resources Science, 2016, 38(4):704-713.]
[43]
BALL I R, POSSINGHAM H P, WATTS M. Spatial Conservation Prioritisation:Quantitative Methods and Computational Tools. Oxford: Oxford University Press, 2009: 185-195.
[44]
卢奕帆, 林锦耀. 城市协同发展对粮食生产区域的影响预测: 以珠三角城市群为例. 自然资源学报, 2023, 38(6): 1532-1549.
摘要
探索基于系统保护规划理念的粮食生产功能区划定方法,分析各城市协同发展下城市群扩张对优质耕地的侵占情况,对区域粮食生产功能区识别、资源配置优化和空间布局规划具有重要实践意义。为此结合城市流理论与PLUS模型,模拟预测两种不同发展情景下2030年珠三角城市群的扩张情况;基于系统保护理念识别该区域的粮食生产功能区和粮食生产后备区,分析不同扩张结果对粮食生产区的侵占情况。结果表明:(1)珠三角各城市协同发展情景下的城市群扩张模拟结果更符合现实发展情况;(2)基于系统保护规划理念,可将研究区域的耕地划分为粮食生产功能区、粮食生产后备区、其余区域;(3)相较各城市独立发展的情景,基于城市相互作用的城市群扩张结果侵占的粮食生产功能区以及粮食生产后备区面积更少。本文所提出的粮食生产功能区的划定方法能统筹社会经济发展、保护耕地、维护粮食安全的多重目标,为城市区域化背景下优化国土空间开发保护格局提供建议和依据。
[LU Y F, LIN J Y. Predicting the impact of urban agglomeration development on grain production regions: A case study of Pearl River Delta. Journal of Natural Resources, 2023, 38(6): 1532-1549.]
[45]
山东省渔业技术推广站. 2015年山东省水产养殖渔情分析报告. http://www.shuichan.cc/news_view-288014.html, 2016-07-08.
[Shandong Provincial Fisheries Technology Extension Station. 2015 Shandong province aquaculture fishing situation analysis report. http://www.shuichan.cc/news_view-288014.html, 2016-07-08.]
[46]
中国化工报. 原盐亏损严重陷生存危机. http://www.cinic.org.cn/xw/cjyj/68410.html, 2015-09-14.
[China Chemical News. Raw salt in serious loss and survival crisis. http://www.cinic.org.cn/xw/cjyj/68410.html, 2015-09-14.]
[47]
冯琰玮, 甄江红, 田桐羽. 基于生态安全格局的国土空间保护修复优化: 以内蒙古呼包鄂地区为例. 自然资源学报, 2022, 37(11): 2915-2929.
摘要
构建生态安全格局可为国土空间保护修复提供对策,以补充现有研究对国土空间优化实践指导的不足。以内蒙古呼包鄂地区为案例,识别城镇、生态源地,构建源地扩展阻力评价体系,通过最小累积阻力模型划分安全格局小区;基于电路理论识别国土空间保护修复重点区域(生态廊道、生态“夹点”、生态障碍点),优化生态安全格局,提出国土空间保护修复建议,得到的主要结论有:研究区城镇源地适宜扩展区远小于生态源地,国土空间保护修复有较大潜力;安全格局小区中生态保育区生态空间面积最大,其次是优化缓冲区生态空间,生态防护区生活空间最小;识别135条生态廊道,12个生态“夹点”,6个生态障碍点,164个生态战略点,架构生态安全网络,形成“多核四区三带一屏一流域”的国土空间保护修复格局,以达到提升生态景观完整度与连通性、维护区域生态安全的目标。
[FENG Y W, ZHEN J H, TIAN T Y. Optimization of land protection and restoration based on ecological security pattern: A case study of Hohhot-Baotou-Ordos Region in Inner Mongolia. Journal of Natural Resources, 2022, 37(11): 2915-2929.]
[48]
方莹, 王静, 黄隆杨, 等. 基于生态安全格局的国土空间生态保护修复关键区域诊断与识别: 以烟台市为例. 自然资源学报, 2020, 35(1): 190-203.
摘要
山水林田湖草系统生态保护修复是维护国家生态安全的重要保障。当前国土空间生态保护修复研究缺乏从生态系统的完整性和结构连通性角度对国土空间生态保护修复关键区域进行诊断和识别。烟台市作为我国典型滨海城市,湿地退化,生境类型单一造成景观稳定性差,国土空间生态保护修复刻不容缓。为全面识别烟台市国土空间生态保护修复关键区域,利用生境质量模型、生境风险评估模型、粒度反推法、最小累积阻力模型和电路理论,通过构建区域生态安全格局,诊断生态&ldquo;夹点&rdquo;、生态障碍点、生态断裂点等,识别和确定研究区域的国土空间生态保护修复关键区域。研究发现:(1)烟台市生态源地共计668.85 km<sup>2</sup>,主要为林地、水域,源间廊道共计1548.36 km,呈现&ldquo;两横两纵&rdquo;的空间特征;(2)基于生态安全格局识别烟台生态保护修复关键区域,包括13处生态&ldquo;夹点&rdquo;区域、8处生态障碍点区域、39处生态断裂点区域、破碎生态空间1308.66 km<sup>2</sup>;(3)结合各类生态保护修复关键区域的空间分布特征、土地利用现状,分别提出修复提升方向。研究可为国土空间生态保护修复关键区域识别、生态系统整体修复提升提供科学指导。
[FANG Y, WANG J, HUANG L Y, et al. Determining and identifying key areas of ecosystem preservation and restoration for territorial spatial planning based on ecological security patterns: A case study of Yantai city. Journal of Natural Resources, 2020, 35(1): 190-203.]

Ecosystem preservation and restoration of Mountain-River-Forest-Farmland-Lake-Grass System is very important for national ecological security. Current researches on ecosystem preservation and restoration for territorial spatial planning lack the determination and identification of key areas from a perspective of ecosystem integrity and landscape connectivity. Due to wetland degradation and homogeneity of habitat types that resulted in the low ecosystem resilience, it is urgent for in Yantai, a typical bay city in China, to restore degraded ecosystem and preserve natural resources. In the study, a regional ecological security pattern was proposed and key areas of ecosystem preservation and restoration including pinch points, barrier points, break points and fragmented ecological functional land were identified using habitat quality model, habitat risk assessment model, granularity inverse method, minimum cumulative resistance model and circuit theory. The results showed that the ecological hubs covered an area of 668.85 km2, with a total of 1548.36 km corridors between them, and most of the hubs were water body and forests. All of them constructed a "two horizontal and two vertical" ecological security pattern. Key areas of ecosystem preservation and restoration were identified based on the ecological security pattern, including a total of 13 ecological pinch points, 8 ecological barrier points, 39 ecological break points, and 1308.66 km2 of fragmented ecological land. Suggestions of restoration were proposed, with a combination of the spatial distribution characteristics and land use status of various key areas of ecosystem preservation and restoration. It would help to provide scientific guidance for identifying key areas of ecosystem preservation and restoration for territorial spatial planning and sustainable ecosystem management.

[49]
ZHI L H, LI X W, BAI J H, et al. Seawall-induced impacts on large river delta wetlands and blue carbon storage under sea level rise. Science of the Total Environment, 2023, 859: 159891, Doi: 10.1016/j.scitotenv.2022.159891.
[50]
肖笃宁, 韩慕康, 李晓文, 等. 环渤海海平面上升与三角洲湿地保护. 第四纪研究, 2003, 23(3): 237-246.
[XIAO D N, HAN M K, LI X W, et al. Bohai Rim sea level rise and delta wetland protection. Quaternary Sciences, 2003, 23(3): 237-246.]

基金

国家重点研发计划(2019YFE0121500)
国家自然科学基金委—山东联合基金项目(U2006215)
国家自然科学基金委—山东联合基金项目(U22A20558)
国家自然科学基金项目(3217130131)
PDF(3301 KB)

2170

Accesses

0

Citation

Detail

段落导航
相关文章

/