
基于生态系统服务优化的滨海湿地一体化保护—修复格局构建
智烈慧, 周方文, 李晓文, 马田田, 邵冬冬, 白军红, 崔保山, 郭卫华
自然资源学报 ›› 2023, Vol. 38 ›› Issue (12) : 3150-3165.
基于生态系统服务优化的滨海湿地一体化保护—修复格局构建
Maximal multiple ecosystem services for coastal wetlands by integrating their conservation and restoration pattern in the Yellow River Delta, China
传统的湿地修复实践侧重点状效果,较少关注景观尺度的空间选址策略。而滨海受损湿地与未受损自然湿地具有结构和功能联系,因此保护和修复应协同优化。以黄河三角洲滨海湿地为例,将湿地保护与修复格局统一到滨海湿地典型生态系统服务(碳储、生境质量和水质净化)提升构架下,以受损区内优势种的适宜生境作为潜在修复区,发展了一套一体化保护—修复格局构建及优化方法。结果表明:保护和修复50%的生态系统服务核心区能够以最小的成本实现目标最大化;为达成该目标应优先将部分自然湿地划入保护区,随后撤出保护区内现存的养殖池,最后实施保护区内的退盐还湿和保护区外的退养还滩。研究提出的方法丰富了国土空间生态修复的技术体系,确定的保护—修复优先区有助于科学划定生态“保护红线”和“修复绿线”,相关调控措施能够为优化滨海湿地现有保护格局提供科学的决策支持。
Traditional restoration practice focused on the site-based success, with less concern about spatial strategy of site-selection restoration at landscape scale. However, site-based restoration may achieve extra ecological benefits if they spatially form an eco-network with existing protected area where their ecosystem functioning can be co-beneficial each other. We therefore developed a novel site-selection spatial strategy to optimize restoration and conservation pattern with maximized co-benefits of ecosystem services (ES) for the coastal wetlands in the Yellow River Delta. We firstly identified the potential restorable sites and target salt marsh based on their hydro-geomorphological regimes using Gaussian model, and captured the hotspots of three major types of ES (i.e., habitat, carbon sequestration, water purification) spatial explicitly by InVEST across the river delta after restoration. Then, the method of Systematic Conservation Planning was used to determine the integrated conservation-restoration pattern and optimal conservation-restoration ratio under the gradient of each conservation-restoration ratio. This involved weighing the economic costs of ecological functions, protecting existing wetlands, and restoring potential wetlands, as well as the representativeness, complementarity, and connectivity of multiple typical ecosystem services under the potential pattern. Finally, the study suggests conservation-restoration tactics within the framework of each scale's optimum pattern. The study suggests conservation-restoration procedures based on the ideal distribution of each proportion. The result indicates that maintaining 50% of ES hotspots after restoration would be the cost-efficient target setting to maximize the regional ES with minimized cost, and thus the prioritized sites for restoration were filtered out by excluding existing protected area from those selected ES hotspots at this target level (50%) across the delta. The integrated conservation-restoration pattern of coastal wetlands that this study proposes to build and optimize enriches the technical system of ecological restoration of land space, and the priority areas for conservation and restoration as well as related regulatory measures can support scientific decision-making for optimizing the current conservation pattern of coastal wetlands.
生态系统服务 / 系统保护规划 / 国土空间生态修复 / 一体化保护修复 / 滨海湿地 {{custom_keyword}} /
ecosystem service / system protection planning / ecological restoration of land and space / integrated conservation and restoration / coastal wetlands {{custom_keyword}} /
表1 黄河三角洲细分植被类型碳库Table 1 Carbon pool by vegetation type in Yellow River Delta (t/hm2) |
土地利用类型 | 地上碳密度 | 地下碳密度 | 土壤碳库 | 凋落物有机碳 |
---|---|---|---|---|
草地 | 5 | 2 | 15 | 0.3 |
城镇建设用地 | 0 | 0 | 12 | 0 |
淡水沼泽 | 17 | 8 | 15 | 0.6 |
港口 | 0 | 0 | 8 | 0 |
工业用地 | 0 | 0 | 12 | 0 |
海岸性盐水湖 | 2 | 1 | 27 | 0 |
旱田 | 9 | 4 | 25 | 0.3 |
河流 | 1.5 | 0.5 | 20 | 0 |
林地 | 31.4 | 6.9 | 24.5 | 0.2 |
裸地 | 0 | 0 | 17 | 0 |
旅游用地 | 0 | 0 | 12 | 0 |
水库坑塘 | 1 | 0.5 | 30 | 0 |
滩地 | 0.5 | 0 | 15 | 0 |
滩涂湿地 | 0.5 | 0 | 15 | 0 |
盐水沼泽(盐地碱蓬、芦苇) | 4 | 2 | 17 | 0.3 |
盐水沼泽(盐地碱蓬、芦苇、柽柳) | 6 | 2 | 20 | 0.2 |
盐水沼泽(芦苇) | 14 | 7 | 15 | 0.6 |
盐水沼泽(芦苇、柽柳) | 10 | 3 | 20 | 0.3 |
盐水沼泽(其他) | 8 | 8 | 15 | 0.6 |
盐田 | 0 | 0 | 17 | 0 |
养殖池 | 0 | 0 | 17 | 0 |
潜在修复区 | 3 | 1 | 20 | 0.2 |
注:芦苇 [Phragmites australis (Cav.) Trin. ex Steu],柽柳(Tamarix chinensis Lour.)。 |
表2 生境适宜性及生境对各威胁因子的敏感度参数Table 2 Habitat suitability and habitat sensitivity parameters |
土地利用 | 生境适宜性 | 生境对各威胁因子的敏感度参数 | |||
---|---|---|---|---|---|
养殖池 | 盐田 | 建设用地 | 农田 | ||
草地 | 1 | 0 | 0.4 | 0 | 0.8 |
林地 | 1 | 0 | 0.5 | 0.2 | 0.1 |
农田 | 0 | 0.2 | 0.6 | 0.4 | 1 |
盐田 | 0 | 0 | 0 | 0 | 0 |
湿地 | 1 | 0.9 | 0.6 | 0.9 | 0.8 |
水体 | 1 | 0.7 | 0 | 0.1 | 0 |
裸地 | 0 | 0 | 0 | 0 | 0 |
建设用地 | 0 | 0.5 | 0 | 0 | 0 |
图6 不同保护—修复目标水平下(20%~80%)聚集度敏感性分析,保护—修复目标水平、成本和边界长度敏感性分析和最优目标水平下的保护—修复格局Fig. 6 Sensitivity analysis of aggregation degree, conservation-restoration proportion, cost and boundary length under the conservation-restoration target level ranging from 20% to 80% and conservation-restoration pattern under optimal proportion |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
Mangrove forests hold some of the highest densities of carbon recorded in any ecosystem, but have experienced widespread deforestation through conversion to aquaculture and agriculture. Alongside deforestation, mangroves have shown simultaneous natural expansion in some parts of the world, and considerable investments have been made into restoration programmes. Here we estimate net changes in the global mangrove carbon stock due to land cover change between 1996 and 2016, using data on mangrove deforestation and forestation, and proportional changes in carbon stock during processes of mangrove loss and gain. The global mangrove carbon stock declined by 158.4 Mt (95% CI = -156.8-525.9 Mt); a reduction of 1.8% of the stock present in 1996. Efforts to conserve and restore mangroves appear to have had some success, and - along with natural forestation - have contributed to relatively low net losses of mangrove carbon stocks over two decades.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
Systematic conservation planning (SCP) is a promising tool underpinned by the idea that multistakeholders’ needs should be considered in any conservation action. However, there is almost no research verifying whether those proposed solutions indeed capture local people's needs. In this article, a SCP exercise was developed in the Pantanal wetland, Brazil, to propose a possible new negotiated solution for environmental protection areas and fisheries zone. To test the validity of the SCP‐delivered solutions, physical maps showing them were presented and discussed with local people. None of the proposed possible SCP scenarios was accepted locally as workable. The fixed solutions proposed by SCP do not map onto the spatial–temporal flexibility of floodplain fisheries. Current, SCP approaches seem far from being able to incorporate the livelihood uncertainties of floodplain fisheries into mathematical models in a way that encompasses people's needs and, therefore remains only a theoretical tool for sustainability.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
梁晨, 李晓文, 崔保山, 等. 中国滨海湿地优先保护格局构建. 湿地科学, 2015, 13(6): 660-666.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
郭云, 梁晨, 李晓文. 基于系统保护规划的黄河流域湿地优先保护格局. 应用生态学报, 2018, 29(9): 3024-3032.
黄河流域湿地为我国生物多样性维持提供了重要生境.本研究基于黄河流域气候分区、地貌单元及湿地遥感数据,构建黄河流域生态地理综合湿地分类系统.在系统保护规划理论框架下,将湿地气候-地貌分类单元作为生态系统层次保护对象,结合黄河流域鸟类分布范围作为物种层次的保护对象,设定30%湿地优化目标,将公路、铁路、城镇、农村居民点、水坝等作为度量因子创建黄河流域保护代价图层,并利用系统保护规划工具——Marxan软件构建黄河流域湿地保护优化格局,识别湿地保护空缺.结果表明: 黄河流域大部分沼泽湿地集中在黄河上游区域,目前源区保护区覆盖面积大,在内蒙古、甘肃及四川部分区域一些稀有湿地类型游离在保护体系外;黄河中游湿地类型以河道和河滩湿地类型为主,保护覆盖率极低,保护空缺严重,经优化保护网络体系后,保护成效可分别得到29.1%、37.6%的提升.黄河下游湿地主要集中在黄河三角洲区域,目前保护体系完整,保护空缺面积极小.总体上,黄河流域中游河流湿地的保护空缺比例最高,亟需重视.本研究基于湿地保护格局优化结果分区分析黄河流域湿地保护模式,为黄河流域湿地的保护规划管理提供了科学性建议,从宏观层面上为黄河流域水生态保护奠定了基石.
[
Yellow River basin is a significant habitat for biodiversity conservation in China. Here, we established a integrated classification system of wetlands based on climate types and geomorphological units, with which as the coarse-filter surrogates of biodiversity elements to complement the fine-filter surrogates of distribution of focal bird species. Then, we applied the theoretical framework of systematic conservation planning (SCP), with those two biodiversity surrogates as protection objects and watershed as planning units. We calculated social and economic costs (including roads, railroads, towns, rural settlements, dams) and set targets of 30% to input Marxan to figure out the optimal set of planning units, which met the protection target with the minimum of social economy cost and land resources. We identified a conservation priority pattern by calculating the irreplaceability of each unit by Marxan. Then, we compared the priority pattern with the existing reserve system to analyze conservation gap in the Yellow River basin. The results showed that most marsh wetlands were concentrated in the upper reaches of the Yellow River. The coverage of reserves in the source area was large. Some rare wetland types in Inner Mongolia, Gansu and Sichuan were separated from the protection system. The main wetland types in the middle reaches of the Yellow River were riverine wetlands, with low protection coverage rate and large conservation gaps. After protection network system being optimized, the protection effect was improved by29.1%-37.6%. The wetland in the lower reaches of the Yellow River was mainly concentrated in the Yellow River Delta area. The protection system was good and the conservation gaps was small. Overall, riverine wetlands in the middle reaches of the Yellow River basin had the highest area proportion of conservation gaps which needed more attention. Based on the priority conservation pattern, our results provided scientific suggestions for the protection planning and management of wetlands in the Yellow River basin, which would lay a foundation for the water ecological protection of the Yellow River basin from the macro scale.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
River rehabilitation aims to protect biodiversity or restore key ecosystem services but the success rate is often low. This is seldom because of insufficient funding for rehabilitation works but because trade-offs between costs and ecological benefits of management actions are rarely incorporated in the planning, and because monitoring is often inadequate for managers to learn by doing. In this study, we demonstrate a new approach to plan cost-effective river rehabilitation at large scales. The framework is based on the use of cost functions (relationship between costs of rehabilitation and the expected ecological benefit) to optimize the spatial allocation of rehabilitation actions needed to achieve given rehabilitation goals (in our case established by the Swiss water act). To demonstrate the approach with a simple example, we link costs of the three types of management actions that are most commonly used in Switzerland (culvert removal, widening of one riverside buffer and widening of both riversides) to the improvement in riparian zone quality. We then use Marxan, a widely applied conservation planning software, to identify priority areas to implement these rehabilitation measures in two neighbouring Swiss cantons (Aargau, AG and Zürich, ZH). The best rehabilitation plans identified for the two cantons met all the targets (i.e. restoring different types of morphological deficits with different actions) rehabilitating 80,786 m (AG) and 106,036 m (ZH) of the river network at a total cost of 106.1 Million CHF (AG) and 129.3 Million CH (ZH). The best rehabilitation plan for the canton of AG consisted of more and better connected sub-catchments that were generally less expensive, compared to its neighbouring canton. The framework developed in this study can be used to inform river managers how and where best to spend their rehabilitation budget for a given set of actions, ensures the cost-effective achievement of desired rehabilitation outcomes, and helps towards estimating total costs of long-term rehabilitation activities. Rehabilitation plans ready to be implemented may be based on additional aspects to the ones considered here, e.g., specific cost functions for rural and urban areas and/or for large and small rivers, which can simply be added to our approach. Optimizing investments in this way will ultimately increase the likelihood of on-ground success of rehabilitation activities. Copyright © 2013 Elsevier Ltd. All rights reserved.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
朱书玉, 王伟华, 王玉珍, 等. 黄河三角洲自然保护区湿地恢复与生物多样性保护. 北京林业大学学报, 2011, 33(s2): 1-5.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
熊瑶, 杨云峰. 天然类城市湿地恢复与重建策略: 以芜湖大阳垾湿地公园建设为例. 林业科技开发, 2014, 28(1): 133-138.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
沈守云, 曾华浩, 王薇薇. 国际重点湿地: 湖北洪湖湿地生态恢复规划探索. 中国园林, 2009, 25(2): 46-50.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
葛振鸣, 周晓, 王开运, 等. 受损湖泊湿地生态修复规划与效益分析: 以上海西郊湿地为例. 生态经济, 2009, 25(4): 30-36.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
吴后建, 王学雷. 中国湿地生态恢复效果评价研究进展. 湿地科学, 2006, 4(4): 304-310.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
李晓文, 李梦迪, 梁晨, 等. 湿地恢复若干问题探讨. 自然资源学报, 2014, 29(7): 1257-1269.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
李晓文, 智烈慧, 马田田, 等. 构筑基于“三线整合”的中国滨海湿地生态安全格局. 中国科学院院刊, 2023, 38(1): 123-133.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
李晓文, 吕江涛, 智烈慧, 等. 基于“目标—成本—效益”协同优化的山水林田湖草沙一体化生态保护与修复格局. 生态学报, 2023, 43(9): 3625-3635.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
许学工, 林辉平, 付在毅, 等. 黄河三角洲湿地区域生态风险评价. 北京大学学报: 自然科学版, 2001, 37(1): 111-120.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
张希画. 1998—2008年黄河三角洲黑嘴鸥繁殖种群数量及其繁殖生境动态变化. 山东林业科技, 2012, 42(3): 12-15, 5.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
王彬. 基于CVM的黄河三角洲湿地生态系统服务价值评估研究. 青岛: 青岛大学, 2010.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
陈建, 王世岩, 毛战坡. 1976—2008年黄河三角洲湿地变化的遥感监测. 地理科学进展, 2011, 30(5): 585-592.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
宋红丽, 刘兴土. 围填海活动对我国河口三角洲湿地的影响. 湿地科学, 2013, 11(2): 297-304.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
陈琳, 任春颖, 王灿, 等. 6个时期黄河三角洲滨海湿地动态研究. 湿地科学, 2017, 15(2): 179-186.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
周方文, 马田田, 李晓文, 等. 黄河三角洲滨海湿地生态系统服务模拟及评估. 湿地科学, 2015, 13(6): 667-674.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
张森, 刘福德, 刘庆, 等. 黄河三角洲不同湿地群落氮磷化学计量特征及其生境适应策略. 生态学杂志, 2015, 34(11): 2983-2989.
选取黄河三角洲滨海湿地盐地碱蓬(Suaeda salsa)、芦苇(Phragmites australis)和柽柳(Tamarix chinensis)3种典型植物群落为研究对象,研究了土壤植物N、P元素的空间分布格局及N/P化学计量学特征。结果表明: 盐地碱蓬地上部分N含量,地下部分N、P含量均小于芦苇和柽柳群落,柽柳地上部分P含量、N/P值均大于芦苇和盐地碱蓬群落。3种典型湿地群落N含量均呈现出地上部分大于地下部分的规律,说明植物会将有限的氮资源优先分配给地上部分光合器官;盐地碱蓬与柽柳地上和地下部分磷含量变化趋势相反,这种差异说明处在不同群落演替阶段的植物生活史策略不同。与木本植物柽柳不同,草本植物芦苇和盐地碱蓬N/P均表现出地上部分大于地下部分的特征,这与草本植物地上部分相对生长速率较大有关。土壤中N含量、N/P垂直变化趋势一致,均随着土层深度的增加而显著降低,但土壤磷的垂直变化特征不明显。相关分析显示,土壤(源)植物(库)之间N、P相关性较弱,说明除了土壤条件,滨海湿地氮磷化学计量格局还与植物自身的生理调节有关。
[
In order to study the spatial distribution patterns of nitrogen (N) and phosphorus (P) and the stoichiometric characteristics of three typical plant communities (<em>Suaeda salsa</em>, <em>Phragmites australis</em> and <em>Tamarix chinensis</em>) of coastal wetlands in the Yellow River Delta, soil and plant samples were collected. The results showed that the contents of aboveground N and underground N and P of <em>S. salsa</em> were lower than those of <em>P. australis</em> and <em>T. chinensis</em>, while the aboveground P content and N/P ratio of <em>T. chinensis</em> were higher than those of <em>P. australis</em> and <em>S. salsa</em>. For the three wetland communities, the N content of aboveground biomass was significantly higher than that of underground biomass, indicating that N tended to be allocated to the aboveground photosynthetic organ in the Nlimited habitat. However, an opposite trend existed for the P contents of above and underground biomass of <em>T. chinensis</em> and <em>S. salsa</em>, which revealed that species in different successional status would adopt different strategies to adapt to various environments. Unlike the woody species <em>T. chinensis</em>, the aboveground biomass of <em>P. australis</em> and <em>S. salsa</em> had higher N/P ratios than the underground biomass, and this was possibly related to the high relative growth rate of the aboveground organs of herbaceous species. The soil N content and N/P ratio decreased with the soil depth increasing, while no obvious changes of soil P were found along the vertical soil profile. The weak correlations </br> between the top soil (source) and the plant organs (pool) suggested that physiological accommodation of coastal wetland plants played some roles in N/P stoichiometric regulation besides soil conditions.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
山东省人民政府. 关于公布《山东省海洋功能区划》的通知. http://www.shandong.gov.cn/art/2005/10/8/art_2477_219681.html, 2005-10-08.
[People's Government of Shandong Province. Notice on the publication of the "Marine Functional Zoning of Shandong Province". http://www.shandong.gov.cn/art/2005/10/8/art_2477_219681.html, 2005-10-08.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
崔保山, 贺强, 赵欣胜. 水盐环境梯度下翅碱蓬 (Suaeda salsa) 的生态阈值. 生态学报, 2008, 28(4): 1408-1418.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
吴春生, 黄翀, 刘高焕, 等. 黄河三角洲土壤含盐量空间预测方法研究. 资源科学, 2016, 38(4): 704-713.
土壤盐分对农业发展和土地生产力有很大影响,土壤盐碱化会降低耕地质量并造成土地退化,及时了解区域内土壤盐分含量及空间分布很有必要。地理加权回归是一种局部回归预测方法,其利用主变量与环境要素的相关关系,根据空间位置和距离特点,实现主变量的空间扩展。本研究目的即是探索地理加权回归在土壤盐分空间插值中的可用性,并与多元线性回归和协同克里格作对比来检验其精度。地理加权回归模型构建所选择的环境变量包括NDVI,高程和距河流距离。研究结果显示,地理加权回归在土壤盐分空间扩展中效果较好,精度优于其他两种方法(均方根误差为0.305,相关系数为0.649,决定系数为0.421),该方法降低了协同克里格插值的平滑效应,又比多元线性回归结果具有更多的空间细节展示,故本研究认为地理加权回归是一种较好的土壤盐分插值方法。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[43] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[44] |
卢奕帆, 林锦耀. 城市协同发展对粮食生产区域的影响预测: 以珠三角城市群为例. 自然资源学报, 2023, 38(6): 1532-1549.
探索基于系统保护规划理念的粮食生产功能区划定方法,分析各城市协同发展下城市群扩张对优质耕地的侵占情况,对区域粮食生产功能区识别、资源配置优化和空间布局规划具有重要实践意义。为此结合城市流理论与PLUS模型,模拟预测两种不同发展情景下2030年珠三角城市群的扩张情况;基于系统保护理念识别该区域的粮食生产功能区和粮食生产后备区,分析不同扩张结果对粮食生产区的侵占情况。结果表明:(1)珠三角各城市协同发展情景下的城市群扩张模拟结果更符合现实发展情况;(2)基于系统保护规划理念,可将研究区域的耕地划分为粮食生产功能区、粮食生产后备区、其余区域;(3)相较各城市独立发展的情景,基于城市相互作用的城市群扩张结果侵占的粮食生产功能区以及粮食生产后备区面积更少。本文所提出的粮食生产功能区的划定方法能统筹社会经济发展、保护耕地、维护粮食安全的多重目标,为城市区域化背景下优化国土空间开发保护格局提供建议和依据。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[45] |
山东省渔业技术推广站. 2015年山东省水产养殖渔情分析报告. http://www.shuichan.cc/news_view-288014.html, 2016-07-08.
[Shandong Provincial Fisheries Technology Extension Station. 2015 Shandong province aquaculture fishing situation analysis report. http://www.shuichan.cc/news_view-288014.html, 2016-07-08.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[46] |
中国化工报. 原盐亏损严重陷生存危机. http://www.cinic.org.cn/xw/cjyj/68410.html, 2015-09-14.
[China Chemical News. Raw salt in serious loss and survival crisis. http://www.cinic.org.cn/xw/cjyj/68410.html, 2015-09-14.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[47] |
冯琰玮, 甄江红, 田桐羽. 基于生态安全格局的国土空间保护修复优化: 以内蒙古呼包鄂地区为例. 自然资源学报, 2022, 37(11): 2915-2929.
构建生态安全格局可为国土空间保护修复提供对策,以补充现有研究对国土空间优化实践指导的不足。以内蒙古呼包鄂地区为案例,识别城镇、生态源地,构建源地扩展阻力评价体系,通过最小累积阻力模型划分安全格局小区;基于电路理论识别国土空间保护修复重点区域(生态廊道、生态“夹点”、生态障碍点),优化生态安全格局,提出国土空间保护修复建议,得到的主要结论有:研究区城镇源地适宜扩展区远小于生态源地,国土空间保护修复有较大潜力;安全格局小区中生态保育区生态空间面积最大,其次是优化缓冲区生态空间,生态防护区生活空间最小;识别135条生态廊道,12个生态“夹点”,6个生态障碍点,164个生态战略点,架构生态安全网络,形成“多核四区三带一屏一流域”的国土空间保护修复格局,以达到提升生态景观完整度与连通性、维护区域生态安全的目标。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[48] |
方莹, 王静, 黄隆杨, 等. 基于生态安全格局的国土空间生态保护修复关键区域诊断与识别: 以烟台市为例. 自然资源学报, 2020, 35(1): 190-203.
山水林田湖草系统生态保护修复是维护国家生态安全的重要保障。当前国土空间生态保护修复研究缺乏从生态系统的完整性和结构连通性角度对国土空间生态保护修复关键区域进行诊断和识别。烟台市作为我国典型滨海城市,湿地退化,生境类型单一造成景观稳定性差,国土空间生态保护修复刻不容缓。为全面识别烟台市国土空间生态保护修复关键区域,利用生境质量模型、生境风险评估模型、粒度反推法、最小累积阻力模型和电路理论,通过构建区域生态安全格局,诊断生态“夹点”、生态障碍点、生态断裂点等,识别和确定研究区域的国土空间生态保护修复关键区域。研究发现:(1)烟台市生态源地共计668.85 km<sup>2</sup>,主要为林地、水域,源间廊道共计1548.36 km,呈现“两横两纵”的空间特征;(2)基于生态安全格局识别烟台生态保护修复关键区域,包括13处生态“夹点”区域、8处生态障碍点区域、39处生态断裂点区域、破碎生态空间1308.66 km<sup>2</sup>;(3)结合各类生态保护修复关键区域的空间分布特征、土地利用现状,分别提出修复提升方向。研究可为国土空间生态保护修复关键区域识别、生态系统整体修复提升提供科学指导。
[
Ecosystem preservation and restoration of Mountain-River-Forest-Farmland-Lake-Grass System is very important for national ecological security. Current researches on ecosystem preservation and restoration for territorial spatial planning lack the determination and identification of key areas from a perspective of ecosystem integrity and landscape connectivity. Due to wetland degradation and homogeneity of habitat types that resulted in the low ecosystem resilience, it is urgent for in Yantai, a typical bay city in China, to restore degraded ecosystem and preserve natural resources. In the study, a regional ecological security pattern was proposed and key areas of ecosystem preservation and restoration including pinch points, barrier points, break points and fragmented ecological functional land were identified using habitat quality model, habitat risk assessment model, granularity inverse method, minimum cumulative resistance model and circuit theory. The results showed that the ecological hubs covered an area of 668.85 km2, with a total of 1548.36 km corridors between them, and most of the hubs were water body and forests. All of them constructed a "two horizontal and two vertical" ecological security pattern. Key areas of ecosystem preservation and restoration were identified based on the ecological security pattern, including a total of 13 ecological pinch points, 8 ecological barrier points, 39 ecological break points, and 1308.66 km2 of fragmented ecological land. Suggestions of restoration were proposed, with a combination of the spatial distribution characteristics and land use status of various key areas of ecosystem preservation and restoration. It would help to provide scientific guidance for identifying key areas of ecosystem preservation and restoration for territorial spatial planning and sustainable ecosystem management. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[49] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[50] |
肖笃宁, 韩慕康, 李晓文, 等. 环渤海海平面上升与三角洲湿地保护. 第四纪研究, 2003, 23(3): 237-246.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |