
西部资源型城市绿色发展效率时空分异与驱动力
Research on spatiotemporal heterogeneity and driving forces of green development efficiency in resource-based cities of Western China
绿色发展是资源型城市高质量转型的重要体现。通过构建绿色发展效率评价体系,基于MinDs模型、泰尔指数、地理探测器等方法,测算2001—2019年西部资源型城市绿色发展效率时空分异特征,分析其驱动因素。结论如下:(1)西部资源型城市绿色发展效率以2015年为界,呈“先升后降”变化,西北、广西的资源型城市整体上升,西南和内蒙古的资源型城市近年呈下降趋势,成长型城市发展较为稳定,成熟型和再生型城市2017年后下降明显,衰退型城市呈上升趋势;(2)西部资源型城市绿色发展效率表现为极低和极高区间数量少、中间得分数量多的正态分布特征;(3)绿色发展效率空间非均衡的问题较为严重,其中,西北与西南地区的成熟型城市的变化是导致绿色发展效率差异扩大的主要原因;(4)经济发展、城市化、城市规模和技术创新能够显著提升西部资源型城市绿色发展效率,不同空间范围和不同生命周期下的资源型城市绿色发展效率驱动因素各有特点。研究对提升西部各类资源型城市绿色发展效率有实际意义。
Green development is an important manifestation of the high-quality transformation of resource-based cities. The study develops a green development efficiency evaluation system, using MinDs model, Theil index, Geodetector and other methods, to measure green development efficiencies in resource-based cities of Western China from 2001 to 2019, and analyzes the spatiotemporal heterogeneity characteristics and associated driving factors. The main conclusions are as follows: (1) The green development efficiency of resource-based cities in the western region is bounded by 2015, showing a trend of "rising first and then falling", the green development efficiency change trends of different types of cities are quite different, resource-based cities in Northwest China and Guangxi have shown an upward trend as a whole, resource-based cities in Southwest China and Inner Mongolia have shown a downward trend in recent years, growing cities have developed relatively stable, mature and regenerating cities have declined significantly after 2017, and declining cities have shown an upward trend. (2) The green development efficiency of resource-based cities in the western region is characterized by a normal distribution with a small number of extremely low and extremely high intervals, and a large number of intermediate scores. (3) The problem of spatial unevenness of green development efficiency is still serious. Changes in the efficiencies of mature cities in northwest and southwest regions are the dominant factors for expanding gaps in the efficiencies of resource-based cities in Western China. (4) Economic development, urbanization, city size expansion and technological innovation can significantly increase the green development efficiency of resource-based cities in the whole study area. Moreover, the driving factors of green development efficiency of resource-based cities in different spatial ranges and different life cycles have their own characteristics. The research has practical significance for improving the green development efficiency of various resource-based cities in the western region of China.
绿色发展效率 / 时空分异 / 驱动机制 / 西部 / 资源型城市 {{custom_keyword}} /
green development efficiency / spatiotemporal heterogeneity / driving mechanism / Western China / resource-based cities {{custom_keyword}} /
表1 本研究的研究对象Table 1 Research objects of this study |
研究范围 | 省(自治区) | 资源型城市 | 省会 |
---|---|---|---|
西北片区 | 陕西 | 宝鸡2、咸阳1、铜川3、渭南2、延安1、榆林1 | 西安 |
甘肃 | 武威1、庆阳1、平凉2、白银3、金昌2、张掖4、陇南1 | 兰州 | |
宁夏 | 石嘴山3 | 银川 | |
新疆 | 克拉玛依2 | 乌鲁木齐 | |
西南片区 | 四川 | 攀枝花2、泸州3、南充1、雅安2、广元2、达州2、自贡2、广安2 | 成都 |
云南 | 昭通1、曲靖2、保山2、普洱2、丽江4、临沧2 | 昆明 | |
贵州 | 六盘水1、安顺2 | 贵阳 | |
内蒙古片区 | 内蒙古 | 包头4、乌海3、赤峰2、鄂尔多斯1、呼伦贝尔1 | 呼和浩特 |
广西片区 | 广西 | 贺州1、百色2、河池2 | 南宁 |
总计/个 | 39 | 9 |
注:按资源型城市的生命周期发展规律,1为成长型阶段;2为成熟型阶段;3为衰退型阶段;4为再生型阶段。 |
表2 西部资源型城市绿色发展效率评价指标体系Table 2 Evaluation index system of green development efficiency of resource-based cities in Western China |
目标层 | 决策层 | 类型 | 指标层 | 衡量方式 | 单位 | 数据来源 |
---|---|---|---|---|---|---|
西部资源型城市绿色发展 | 投入指标 | 劳动力 | 个体从业人员、城镇私营与单位从业人员之和 | 人 | 各城市《统计年鉴(2002—2020年)》《中国城市统计年鉴(2002—2020年)》 | |
资本 | 固定资产投资额 | 万元 | ||||
资源 | 供水总量 | 万t | ||||
能源 | 全社会用电量 | 亿kW·h | ||||
产出指标 | 期望 产出 | 经济发展 | 城市人均GDP | 元/人 | ||
污染治理能力 | 污水处理率、一般固废综合利用率、工业二氧化硫处理率、工业粉尘去除率与生活垃圾无害化处理率赋权所求综合指数 | — | ||||
非期望 产出 | 环境污染 | 工业废水、工业烟(粉)尘及工业二氧化硫排放量赋权所求综合指数 | — |
注:—表示无单位。 |
表3 2001—2019年西部资源型城市与其省会城市绿色发展效率得分对比Table 3 Comparison of green development efficiency scores between resource-based cities in Western China and their provincial capital cities during 2001-2019 |
年份 | 总得分 | 西北 | 西南 | 内蒙古 | 广西 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
省会 | 资源型 | 省会 | 资源型 | 省会 | 资源型 | 省会 | 资源型 | 省会 | 资源型 | |||||||||
2001 | 1.107 | 0.762 | 1.390 | 0.771 | 0.909 | 0.733 | 1.574 | 0.855 | 1.209 | 0.715 | ||||||||
2002 | 1.015 | 0.768 | 1.282 | 0.842 | 0.774 | 0.688 | 1.492 | 0.840 | 1.203 | 0.695 | ||||||||
2003 | 1.150 | 0.771 | 1.268 | 0.816 | 1.295 | 0.715 | 1.492 | 0.864 | 1.056 | 0.694 | ||||||||
2004 | 1.274 | 0.829 | 1.813 | 0.897 | 0.906 | 0.781 | 1.742 | 0.851 | 1.027 | 0.705 | ||||||||
2005 | 1.150 | 0.823 | 1.399 | 0.899 | 1.127 | 0.747 | 1.490 | 1.005 | 1.029 | 0.553 | ||||||||
2006 | 1.075 | 0.864 | 1.355 | 0.908 | 1.120 | 0.775 | 1.370 | 1.197 | 0.596 | 0.568 | ||||||||
2007 | 0.897 | 0.810 | 1.095 | 0.859 | 0.836 | 0.732 | 1.586 | 1.093 | 0.495 | 0.511 | ||||||||
2008 | 1.202 | 0.857 | 1.713 | 0.945 | 1.105 | 0.767 | 1.325 | 1.076 | 0.533 | 0.535 | ||||||||
2009 | 0.960 | 0.836 | 1.343 | 0.916 | 0.879 | 0.744 | 1.095 | 1.087 | 0.497 | 0.513 | ||||||||
2010 | 1.009 | 0.868 | 1.425 | 0.984 | 0.876 | 0.765 | 1.137 | 1.031 | 0.621 | 0.566 | ||||||||
2011 | 1.123 | 0.890 | 1.461 | 0.988 | 1.148 | 0.799 | 1.322 | 1.066 | 0.619 | 0.598 | ||||||||
2012 | 0.962 | 0.818 | 1.273 | 0.966 | 0.874 | 0.702 | 1.242 | 0.896 | 0.658 | 0.567 | ||||||||
2013 | 1.009 | 0.892 | 1.253 | 1.024 | 0.928 | 0.796 | 1.190 | 0.929 | 1.105 | 0.676 | ||||||||
2014 | 1.008 | 0.921 | 1.180 | 1.027 | 1.026 | 0.816 | 1.212 | 0.930 | 1.068 | 0.935 | ||||||||
2015 | 0.949 | 0.950 | 1.238 | 1.036 | 0.750 | 0.855 | 1.207 | 1.022 | 1.084 | 0.903 | ||||||||
2016 | 0.974 | 0.933 | 1.254 | 1.020 | 0.788 | 0.822 | 1.276 | 0.966 | 1.088 | 1.038 | ||||||||
2017 | 1.101 | 0.897 | 1.403 | 0.992 | 1.077 | 0.831 | 1.092 | 0.988 | 1.071 | 0.627 | ||||||||
2018 | 1.078 | 0.887 | 1.361 | 1.022 | 1.066 | 0.783 | 1.085 | 0.905 | 1.057 | 0.736 | ||||||||
2019 | 1.105 | 0.822 | 1.368 | 1.009 | 1.149 | 0.682 | 1.071 | 0.862 | 1.056 | 0.564 |
表4 绿色发展效率驱动力指标Table 4 Driving force indicators of green development efficiency |
代码 | 探测因子 | 因子含义 |
---|---|---|
X1 | 经济发展水平 | 人均GDP(以2001年为基期折算后的实际值) |
X2 | 产业转型水平 | 第三产业增加值/第二产业增加值 |
X3 | 市场多元化水平 | 第三产业从业人员/社会从业人员 |
X4 | 人力资本素质 | 每万人在校大学生数 |
X5 | 城市化水平 | 城市常住人口/总人口 |
X6 | 能源强度 | 全社会用电量与用水量综合指数 |
X7 | 政府支持 | 一般性地方财政支出占GDP总值比例 |
X8 | 城市规模 | 地区年末总人口数 |
X9 | 教育投入 | 地区财政支出中教育支出占比 |
X10 | 对外开放水平 | 当年直接利用外资金额占GDP比例 |
X11 | 技术创新水平 | 地区财政支出中技术研发支出占比 |
X12 | 金融发展水平 | 金融机构年末存贷款余额占GDP比例 |
X13 | 信息基础设施水平 | 地区邮电业务总量 |
表5 不同空间划分视角下绿色发展效率驱动因素Table 5 Driving factors of green development efficiency from the perspective of different spatial divisions |
研究时段/年 | 影响因素 | 全域 | 西北 | 西南 | 内蒙古 | 广西 | 影响因素 | 全域 | 西北 | 西南 | 内蒙古 | 广西 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
整体 | 经济发展 水平X1 | 0.331 | 0.244 | 0.076 | 0.618 | 0.385 | 城市规模X8 | 0.565 | 0.569 | 0.402 | 0.828 | 0.459 |
2001—2012 | 0.243 | 0.154 | 0.056 | 0.478 | 0.282 | 0.535 | 0.552 | 0.391 | 0.741 | 0.455 | ||
2013—2019 | 0.482 | 0.399 | 0.110 | 0.858 | 0.560 | 0.615 | 0.597 | 0.421 | 0.977 | 0.466 | ||
整体 | 产业转型 水平X2 | 0.286 | 0.251 | 0.239 | 0.292 | 0.364 | 教育投入X9 | 0.360 | 0.330 | 0.322 | 0.352 | 0.435 |
2001—2012 | 0.276 | 0.321 | 0.288 | 0.181 | 0.314 | 0.373 | 0.302 | 0.361 | 0.390 | 0.438 | ||
2013—2019 | 0.304 | 0.130 | 0.155 | 0.481 | 0.451 | 0.338 | 0.378 | 0.256 | 0.287 | 0.430 | ||
整体 | 市场多元 化水平X3 | 0.292 | 0.301 | 0.289 | 0.398 | 0.180 | 对外开放水平X10 | 0.271 | 0.167 | 0.084 | 0.591 | 0.240 |
2001—2012 | 0.286 | 0.299 | 0.231 | 0.398 | 0.215 | 0.227 | 0.059 | 0.115 | 0.608 | 0.126 | ||
2013—2019 | 0.303 | 0.306 | 0.388 | 0.398 | 0.119 | 0.345 | 0.352 | 0.032 | 0.561 | 0.435 | ||
整体 | 人力资本 素质X4 | 0.236 | 0.261 | 0.288 | 0.215 | 0.180 | 技术创新水平X11 | 0.376 | 0.113 | 0.178 | 0.382 | 0.830 |
2001—2012 | 0.223 | 0.246 | 0.210 | 0.222 | 0.215 | 0.401 | 0.171 | 0.261 | 0.316 | 0.855 | ||
2013—2019 | 0.258 | 0.289 | 0.421 | 0.203 | 0.119 | 0.333 | 0.013 | 0.036 | 0.495 | 0.789 | ||
整体 | 城市化水平X5 | 0.453 | 0.428 | 0.177 | 0.454 | 0.752 | 金融发展水平X12 | 0.257 | 0.075 | 0.098 | 0.320 | 0.536 |
2001—2012 | 0.517 | 0.410 | 0.171 | 0.543 | 0.945 | 0.305 | 0.070 | 0.139 | 0.331 | 0.681 | ||
2013—2019 | 0.342 | 0.460 | 0.188 | 0.301 | 0.421 | 0.175 | 0.084 | 0.027 | 0.302 | 0.286 | ||
整体 | 能源强度X6 | 0.227 | 0.099 | 0.175 | 0.248 | 0.387 | 信息基础设施水平X13 | 0.224 | 0.194 | 0.083 | 0.218 | 0.402 |
2001—2012 | 0.195 | 0.095 | 0.190 | 0.259 | 0.235 | 0.180 | 0.118 | 0.054 | 0.214 | 0.333 | ||
2013—2019 | 0.283 | 0.107 | 0.151 | 0.229 | 0.647 | 0.301 | 0.324 | 0.131 | 0.226 | 0.522 | ||
整体 | 政府支持X7 | 0.322 | 0.113 | 0.300 | 0.367 | 0.508 | ||||||
2001—2012 | 0.305 | 0.123 | 0.315 | 0.298 | 0.485 | |||||||
2013—2019 | 0.350 | 0.095 | 0.274 | 0.485 | 0.548 |
表6 不同城市生命周期划分视角下绿色发展效率驱动因素Table 6 Driving factors of green development efficiency from the perspective of different growth stages |
研究时段/年 | 影响因素 | 成长型 | 成熟型 | 衰退型 | 再生型 | 影响因素 | 成长型 | 成熟型 | 衰退型 | 再生型 |
---|---|---|---|---|---|---|---|---|---|---|
整体 | 经济发展 水平X1 | 0.429 | 0.333 | 0.435 | 0.744 | 城市规模X8 | 0.493 | 0.384 | 0.792 | 0.751 |
2001—2012 | 0.407 | 0.267 | 0.299 | 0.636 | 0.463 | 0.399 | 0.726 | 0.657 | ||
2013—2019 | 0.468 | 0.447 | 0.669 | 0.930 | 0.544 | 0.357 | 0.904 | 0.913 | ||
整体 | 产业转型 水平X2 | 0.192 | 0.221 | 0.395 | 0.556 | 教育投入X9 | 0.499 | 0.367 | 0.319 | 0.482 |
2001—2012 | 0.214 | 0.211 | 0.459 | 0.668 | 0.419 | 0.273 | 0.290 | 0.370 | ||
2013—2019 | 0.154 | 0.238 | 0.285 | 0.363 | 0.638 | 0.527 | 0.370 | 0.674 | ||
整体 | 市场多元 化水平X3 | 0.176 | 0.232 | 0.428 | 0.691 | 对外开放 水平X10 | 0.350 | 0.069 | 0.227 | 0.697 |
2001—2012 | 0.197 | 0.177 | 0.420 | 0.581 | 0.338 | 0.073 | 0.201 | 0.590 | ||
2013—2019 | 0.140 | 0.326 | 0.443 | 0.878 | 0.370 | 0.062 | 0.273 | 0.880 | ||
整体 | 人力资本 素质X4 | 0.138 | 0.229 | 0.196 | 0.921 | 技术创新 水平X11 | 0.296 | 0.157 | 0.128 | 0.258 |
2001—2012 | 0.143 | 0.152 | 0.207 | 0.886 | 0.265 | 0.242 | 0.192 | 0.338 | ||
2013—2019 | 0.130 | 0.361 | 0.175 | 0.980 | 0.348 | 0.012 | 0.017 | 0.120 | ||
整体 | 城市化水平X5 | 0.320 | 0.430 | 0.905 | 0.780 | 金融发展 水平X12 | 0.043 | 0.045 | 0.286 | 0.438 |
2001—2012 | 0.370 | 0.374 | 0.915 | 0.665 | 0.045 | 0.038 | 0.353 | 0.289 | ||
2013—2019 | 0.235 | 0.527 | 0.888 | 0.978 | 0.039 | 0.059 | 0.173 | 0.692 | ||
整体 | 能源强度X6 | 0.109 | 0.093 | 0.306 | 0.719 | 信息基础设施水平X13 | 0.219 | 0.085 | 0.353 | 0.691 |
2001—2012 | 0.045 | 0.079 | 0.327 | 0.607 | 0.231 | 0.068 | 0.301 | 0.581 | ||
2013—2019 | 0.220 | 0.118 | 0.270 | 0.910 | 0.200 | 0.113 | 0.443 | 0.878 | ||
整体 | 政府支持X7 | 0.189 | 0.066 | 0.117 | 0.579 | |||||
2001—2012 | 0.116 | 0.073 | 0.073 | 0.373 | ||||||
2013—2019 | 0.315 | 0.053 | 0.191 | 0.931 |
[1] |
王洪涛. 中国西部地区农村反贫困问题研究. 北京: 中央民族大学, 2013.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
刘纪远, 邓祥征, 刘卫东, 等. 中国西部绿色发展概念框架. 中国人口·资源与环境, 2013, 23(10): 1-7.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
车磊, 白永平, 周亮, 等. 中国绿色发展效率的空间特征及溢出分析. 地理科学, 2018, 38(11): 1788-1798.
提高绿色发展效率是建设生态文明、促进经济转型发展的重要途径。基于Super-SBM模型对中国(除港、澳、台、西藏地区)2005~2015年绿色发展效率进行测度,从空间异质、空间关联与空间机理3个方面分析绿色发展效率的空间特征,运用空间杜宾模型验证绿色发展效率的溢出效应并探讨各要素的空间传导机制。结果表明:① 2005~2015年,中国绿色发展效率表现为“先平稳再快速再稳定”的阶段性变化规律,地区间差异较大,形成了“东-中-西”阶梯式递减和“南-中-北”对称式分布的空间分异特征,“T”字型发展格局逐渐凸显。② 绿色发展效率存在显著的空间正相关,空间集聚程度逐步降低,热点区域增加,东部沿海地区形成稳定的热点区,中西部形成稳定的冷点区。③ 绿色发展效率的空间自组织性逐渐增强,空间差异不断扩大,由空间自相关导致的结构化分异更加明显,随机成分引起的空间异质性正逐渐减弱,西北-东南是空间差异的主要方向。④ 绿色发展效率存在较强的空间溢出效应,经济水平、技术创新和能源强度产生明显正向效应,产业结构则具有显著负向效应。
[
:The concepts of innovation, coordination, green, open and sharing are the keys to the development of China and even the future. Green development is the main tone of the 13th Five-Year Plan of China, and it emphasizes on the mutual unity and coordinated development between economic growth and environmental protection. It is a kind of human-oriented way of sustainable development. Improving the efficiency of green development is an important way to achieve the ecological civilization construction and transformation of economic development the important way. This study used the spatial analysis methods, such as the Super-SBM model, spatial autocorrelation, spatial variation functions and spatial durbin model to measure the green development efficiency from 2005 to 2015 in China (Tibet, Hong Kong, Macao and Taiwan are excluded), by building an input and output index system of green development efficiency. In addition, from the perspective of geography space, it revealed the spatial pattern and spillover effects of green development efficiency in China. The results showed that: 1) From 2005 to 2015, the efficiency of China’s green development is characterized by the stage characteristics of ‘stable at beginning, then fast and last stable again’. It shows an overall upward trend with large differences among regions. The regional differentiation of the ‘East-Central-West’ stepwise decreasing and the ‘South-Central-North’ symmetrical distribution, and ‘T’ shaped shaft development pattern is particularly evident. 2) There is a positive correlation between green development efficiency, the degree of spatial agglomeration gradually decreases, the hot spots increase, the eastern coastal areas form stable hot spots, and the central and western parts form stable cold spots. 3) The spatial self-organization of green development efficiency is more and more strong, the space difference is gradually increased, the structural differentiation caused by spatial autocorrelation is more obvious, the spatial heterogeneity caused by random components is gradually weakened, and the space between northwest and southeast Significant difference. 4) There is a significant spillover effect of green development efficiency, a significant positive effect on the level of economic development, and a significant negative effect on industrial structure, urbanization and technological innovation. Trying hard to explore the law of spatial evolution of green development and provide a reference for the coordinated green development of the three systems of regional economy, society and environment. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
钱争鸣, 刘晓晨. 中国绿色经济效率的区域差异与影响因素分析. 中国人口·资源与环境, 2013, 23(7): 104 - 109.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
吴延兵. 用DEA方法评测知识生产中的技术效率与技术进步. 数量经济技术经济研究, 2008, 25(7): 67-79.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
刘杨, 杨建梁, 梁媛. 中国城市群绿色发展效率评价及均衡特征. 经济地理, 2019, 39(2): 110-117.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
赵金凯, 杨万平. 中国各地区绿色发展效率测算. 统计与决策, 2017, (24): 115-120.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
黄杰. 中国绿色发展效率的区域差异及动态演进. 地域研究与开发, 2018, 37(4): 13-18.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
郭付友, 佟连军, 仇方道, 等. 鲁南经济带城乡绿色发展效率时空分异及驱动因素识别. 自然资源学报, 2020, 35(8): 1972-1985.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
林晓, 徐伟, 杨凡, 等. 东北老工业基地绿色经济效率的时空演变及影响机制: 以辽宁省为例. 经济地理, 2017, 37(5): 125-132.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
吴传清, 宋筱筱. 长江经济带城市绿色发展影响因素及效率评估. 学习与实践, 2018, (4): 8-13.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
黄建欢, 吕海龙, 王良健. 金融发展影响区域绿色发展的机理: 基于生态效率和空间计量的研究. 地理研究, 2014, 33(3): 532-545.
近年来严重的雾霾在中国许多城市持续大面积出现,这敲响了提升区域发展绿色度的警钟。金融可以也应该在促进绿色发展中发挥重要作用。本文分析金融发展影响区域绿色发展的四个机理,利用生态效率反映区域绿色发展水平,运用空间杜宾模型和中国省域面板数据实证研究了各机理的相对重要性及其空间溢出效应。主要发现有:相对而言,企业监督效应和资本配置效应的作用更显著;前者对当地绿色发展的积极影响相对最大,但长期中才会对周边区域的绿色发展产生积极的空间溢出效应;后者对当地绿色发展具有显著影响,但空间溢出效应不显著;金融危机后资本支持效应和长期贷款的监督效应得到了加强,但证券市场的监督效应则反而具有负面影响;绿色金融效应及其空间溢出均不明显,暗示着有必要加强金融支持绿色产业和环境保护的力度。金融支持绿色发展的政策重点可能在于加强资金使用监督,而不仅是加大资金投入。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
杨志江, 文超祥. 中国绿色发展效率的评价与区域差异. 经济地理, 2017, 37(3): 10-18.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
张文博, 邓玲, 尹传斌. “一带一路”主要节点城市的绿色经济效率评价及影响因素分析. 经济问题探索, 2017, (11): 84-90.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
朴胜任, 李健. 基于超效率DEA模型的中国区域环境效率时空差异研究. 干旱区资源与环境, 2018, 32(4): 1-6.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
周亮, 车磊, 周成虎. 中国城市绿色发展效率时空演变特征及影响因素. 地理学报, 2019, 74(10): 2027-2044.
绿色发展作为化解自然环境约束、破解经济转型难题、支撑和实现全球可持续发展目标(SDGs)关键。正逐渐成为中国生态文明建设、美丽中国建设和全球经济转型与重构的重要指导理念。在梳理绿色发展概念与内涵基础上,采用SBM-Undesirable模型、泰尔指数和空间马尔科夫链等方法,对2005-2015年中国城市绿色发展效率时空分异特征及其演变过程进行了测度与刻画,并进一步耦合自然与人文因素定量探讨了人地关系地域系统下的影响机制。研究表明:① 2005-2015年中国城市绿色发展效率稳步提升,由0.475增加到0.523,总体提高了10%,时序上呈现“W”型波动增加的阶段性演变特征。② 中国城市绿色发展效率呈现出“东中西”阶梯状递减的区域差异规律,不同类型城市群具有“国家级>区域性>地方性”倒金字塔式集群增长特征,形成了“超大城市>特大城市>大城市>中等城市>小城市”稳定等级规模结构。③ 中国城市绿色发展效率空间集聚特征显著,高效率城市存在正向溢出效应,低效率城市则负向溢出影响,“高高集聚、高带动低”的空间俱乐部趋同现象较为凸显,不同类型城市演化存在显著的路径依赖与时空惯性。④ 人地关系地域系统视角下,人文社会因素对城市绿色发展效率影响程度大于自然本底要素,其中经济实力、产业结构、开放程度和城市气温呈现积极促进作用。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
辛龙, 孙慧, 王慧, 等. 基于地理探测器的绿色经济效率时空分异及驱动力研究. 中国人口·资源与环境, 2020, 30(9): 128-138.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
林志炳, 陈志注. 工业结构绿色化对绿色经济效率的影响研究. 电子科技大学学报: 社科版, 2021, 23(1): 19-26.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
方杏村, 田淑英, 王晓玲. 财政分权、产业集聚与绿色经济效率. 经济问题探索, 2019, (11): 164-172.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
陈明华, 刘文斐, 王山, 等. 长江经济带城市生态效率的时空分异及其驱动因素. 中国人口资源与环境, 2020, 30(9): 121-127.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
陈秋星, 陈少晖. 中国城镇基本养老保险支付能力区域差异与影响因素: 基于泰尔指数多指标测度和省际面板数据的实证研究. 湖北经济学院学报, 2021, 19(3): 39-48, 127.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
陈明华, 仲崇阳, 张晓萌. 中国人口老龄化的区域差异与极化趋势: 1995—2014. 数量经济技术经济研究, 2018, (10): 111-125.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
王劲峰, 徐成东. 地理探测器: 原理与展望. 地理学报, 2017, 72(1): 116-134.
空间分异是自然和社会经济过程的空间表现,也是自亚里士多德以来人类认识自然的重要途径。地理探测器是探测空间分异性,以及揭示其背后驱动因子的一种新的统计学方法,此方法无线性假设,具有优雅的形式和明确的物理含义。基本思想是:假设研究区分为若干子区域,如果子区域的方差之和小于区域总方差,则存在空间分异性;如果两变量的空间分布趋于一致,则两者存在统计关联性。地理探测器q统计量,可用以度量空间分异性、探测解释因子、分析变量之间交互关系,已经在自然和社会科学多领域应用。本文阐述地理探测器的原理,并对其特点及应用进行了归纳总结,以利于读者方便灵活地使用地理探测器来认识、挖掘和利用空间分异性。
[
Spatial stratified heterogeneity is the spatial expression of natural and socio-economic process, which is an important approach for human to recognize nature since Aristotle. Geodetector is a new statistical method to detect spatial stratified heterogeneity and reveal the driving factors behind it. This method with no linear hypothesis has elegant form and definite physical meaning. Here is the basic idea behind Geodetector: assuming that the study area is divided into several subareas. The study area is characterized by spatial stratified heterogeneity if the sum of the variance of subareas is less than the regional total variance; and if the spatial distribution of the two variables tends to be consistent, there is statistical correlation between them. Q-statistic in Geodetector has already been applied in many fields of natural and social sciences which can be used to measure spatial stratified heterogeneity, detect explanatory factors and analyze the interactive relationship between variables. In this paper, the authors will illustrate the principle of Geodetector and summarize the characteristics and applications in order to facilitate the using of Geodetector and help readers to recognize, mine and utilize spatial stratified heterogeneity. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
阎晓, 涂建军. 黄河流域资源型城市生态效率时空演变及驱动因素. 自然资源学报, 2021, 36(1): 223-239.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
王晓楠, 孙威. 黄河流域资源型城市转型效率及其影响因素. 地理科学进展, 2020, 39(10): 1643-1655.
资源型城市是黄河流域分布较广和问题较突出的一类城市,提高城市效率、促进资源型城市转型是实现黄河流域生态保护和高质量发展的重要途径。论文利用DEA模型评价了2007—2017年黄河流域41个资源型城市的转型效率,通过固定效应模型对资源型城市转型效率的影响因素及其差异性进行了面板回归分析。结果表明:① 黄河流域资源型城市转型效率并不理想,2017年综合效率最优的城市只有39.02%,2015年以来城市间转型效率的差距有所扩大;② 规模效率是决定综合效率的主要因素,但规模效率最优的城市数量先增后减,规模报酬递减趋势愈发明显,说明部分城市的转型效率存在投入冗余现象;③ 总体看,人均GDP、政府财政收入占GDP的比重、普通高等学校在校学生数对资源型城市转型效率的影响显著为正,第三产业比重的影响显著为负;分类型看,外商投资工业企业占比对煤炭型城市转型效率的影响显著为正,采矿业从业人员占比对成熟型资源型城市转型效率的影响显著为正,不同城市间转型效率的影响因素存在差异性。
[
Resource-based cities are widely distributed in the Yellow River Basin and face prominent problems. Improving urban efficiency and promoting the transformation of resource-based cities are an important way to achieve ecological protection and high-quality development in the Yellow River Basin. This study used the data envelopment analysis (DEA) model to evaluate the transformation efficiency of 41 resource-based cities in the Yellow River Basin from 2007 to 2017. It further carried out a panel regression analysis on the factors that influence the transformation efficiency of resource-based cities through the fixed effect model. The results show that: 1) Transformation efficiency of resource-based cities in the Yellow River Basin is not ideal. The number of cities with the best comprehensive efficiency reached 39.02% of all cities in 2017, but the gap in transformation efficiency has widened since 2015. 2) Scale efficiency is the main determining factor of comprehensive efficiency. The number of cities with the best scale efficiency increased first and then decreased, and the feature of decreasing returns to scale became increasingly more obvious, which indicates that there was a input redundancy in the transformation efficiency of some cities. 3) On the whole, per capita GDP, the proportion of government financial revenue in GDP, and the number of students in ordinary higher education institutions have a significant positive effect on the transformation efficiency of resource-based cities, while the proportion of the tertiary industry has a significant negative effect. With regard to different types of resource-based cities, the proportion of foreign-invested industrial enterprises has a significant positive effect on the transformation efficiency of coal-based cities, and the proportion of mining employees has a significant positive effect on the transformation efficiency of mature resource-based cities. The factors influencing the transformation efficiency of different cities are different. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
崔丹, 卜晓燕, 徐祯, 等. 中国资源型城市高质量发展综合评估及影响机理. 地理学报, 2021, 76(10): 2489-2503.
促进资源型城市转型升级与高质量发展,是中国全面实现高质量发展的难点和重点。对资源型城市高质量发展水平进行综合评估并分析其影响机理既能丰富相关理论研究,也具有重要的实践意义。基于马克思主义政治经济学,梳理和分析了新时代高质量发展的理论框架,系统构建了资源型城市高质量发展的指标体系,在此基础上综合测算了中国117个资源型城市的高质量发展水平,并深入分析了其影响机理。结果表明:① 2005—2017年资源型城市高质量发展水平持续增长,整体呈现显著的“东部相对较高、西部相对较低”的分布格局。② 高质量发展水平较高和较低的城市具有明显的区域集聚特征,但高质量发展水平局部不平衡性加剧,空间极化现象持续扩大。③ 不同成长阶段的城市高质量发展水平存在较大差别,其中,再生型城市高质量发展水平最高,而衰退型城市高质量发展水平最低。④ 资源型城市与省会城市或直辖市的距离、区位和海拔、城市的开放时间等均对资源型城市高质量发展水平有重要影响。
[
Promoting the transformation, upgrading, and high-quality development of resource-based cities is a key point to achieve high-quality development in China. The comprehensive evaluation of the high-quality development of resource-based cities and the analysis of its influence mechanism can not only enrich the relevant theoretical research, but also have important practical significance. Based on Marxist political economy, this paper reviews and analyzes the theoretical framework of high-quality development in the new era, and systematically constructs the index system of high-quality development of resource-based cities. On this basis, the high-quality development level of 117 resource-based cities is comprehensively estimated, and its influence mechanism is analyzed. The results show the following. (1) From 2005 to 2017, the high-quality development level of resource-based cities continued to grow, showing a significant spatial distribution pattern of "relatively high in the east, but relatively low in the west and northeast". (2) The cities with higher and lower high-quality development levels have obvious regional agglomeration characteristics, but the local imbalance of high-quality development level intensifies, and the phenomenon of spatial polarization continues to expand. (3) The high-quality development level of cities in different growth stages is quite different. Among them, the high-quality development level of regenerative cities is the highest, while that of declining cities is the lowest. (4) The distance between resource-based cities and provincial capital cities or municipalities directly under the central government, natural factors (such as location, and altitude of cities), and the open time of cities have an important impact on the high-quality development level of resource-based cities. {{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |