
1901—2017年藏西南高原气候及其生产潜力时空变化
Spatio-temporal variation of climate and its potential productivity in the Southwest Tibet Plateau during 1901-2017
研究全球变暖背景下藏西南高原气候及气候生产潜力时空分布,对该区农牧业发展、生态保护和可持续发展等具有重要意义。基于1901—2017年的中国气象再分析数据,利用Miami和Thornthwaite Memorial模型对近117年藏西南高原气候变化、气候生产潜力的时空分布及影响因素进行了分析。结果表明:近117年来藏西南高原年均温呈上升趋势,年均降水量呈下降趋势,并存在明显周期和突变点;温度生产潜力呈增加趋势,空间上自东南向西北递减;降水、蒸散和标准生产潜力呈减小趋势,呈现自南向北递减的空间分布特征;标准生产潜力由降水和温度共同决定,降水是主要限制因子。未来气候若持续“暖干化”变化,将导致藏西南高原气候生产潜力下降。为促进畜牧业发展和生态环境的改善,未来应进一步推进退牧还草、人工种草、舍饲养殖等工程,并选用耐寒耐旱高产草种,提高牧草产量,实现草畜平衡,以推动传统畜牧业向现代牧业转变,实现草原生态保护和可持续发展。
It is of great significance to study the spatial and temporal distribution of climate and climate productivity potential under the background of global warming for the development of agriculture and animal husbandry, ecological protection, and sustainable development in the Southwest Tibet Plateau (STP). Based on the Miami and Thornthwaite Memorial models, this paper analyzed the spatial and temporal distribution of climate change, climate productivity potential, and its influencing factors in the STP from 1901 to 2017. The results show that the annual average temperature increased and the annual average precipitation decreased in recent 117 years, and there are obvious periods and abrupt changes in the STP. The temperature productivity potential increased, and decreased from southeast to northwest in space. The precipitation, evapotranspiration, and standard productivity potential have all decreased, showing a decreasing trend from south to north. The standard productivity potential is determined by the precipitation and temperature, and the precipitation is the main limiting factor. In the future,if the climate continues to "warm and dry", the climatic productivity potential of the STP will decrease. To promote the development of the animal husbandry and improvement of ecological environment, in the future, it is better to make efforts on returning grazing land, artificial planting of forage grass, grass importing, barn feeding and breeding, selecting drought-tolerant prolific grass with high productivity, improving the forage yield, striving to achieve the equilibrium of breeding, for the shift from the traditional animal husbandry area to the modern one, and for the realization of sustainable development of local agriculture and animal husbandry and ecological protection in the STP.
气候变化 / 气候生产潜力 / Miami和Thornthwaite Memorial模型 / 农业牧业 / 青藏高原 {{custom_keyword}} /
climate change / climate potential productivity / Miami and Thornthwaite Memorial models / agriculture and animal husbandry / Tibet Plateau {{custom_keyword}} /
图3 1901—2017年藏西南高原年均温与年均降水量的Morlet小波系数等值线及小波方差变化曲线Fig. 3 Morlet wavelet coefficient of annual mean temperature and precipitation in the Southwest Tibet Plateau from 1901 to 2017 |
表1 温度、降水、蒸散量与草地生产潜力相关分析Table 1 Correlation analysis of temperature, precipitation, evaporation and potential grassland productivity |
项目 | 相关分析 | 偏相关分析 | ||||
---|---|---|---|---|---|---|
温度 | 降水 | 蒸散量 | 温度 | 降水 | ||
气候生产潜力 | 0.112 | 0.851** | 0.924** | 0.311** | 0.857** |
注:**表示通过0.01水平的显著性检验。 |
表2 藏西南高原气候生产潜力与温度、降水的相关程度占总面积的百分比Table 2 The percentage of the correlation between the climate productivity potential and temperature and precipitation in the total area of the Southwest Tibet Plateau (%) |
相关性 | 气候生产潜力 | |
---|---|---|
温度 | 降水 | |
极显著正相关 | 43.69 | 78.09 |
极显著负相关 | 10.07 | 7.64 |
显著正相关 | 8.14 | 2.48 |
显著负相关 | 7.32 | 2.25 |
不显著正相关 | 15.66 | 4.53 |
不显著负相关 | 15.12 | 5.01 |
呈正相关比例 | 67.49 | 85.10 |
呈负相关比例 | 32.51 | 14.90 |
表3 气候变化情景下藏西南高原气候生产潜力的变化率Table 3 The rate of change of climate productivity potential under climate change scenarios in the Southwest Tibet Plateau |
温度/℃ | 降水/% | ||||
---|---|---|---|---|---|
-20 | -10 | 0 | 10 | 20 | |
-2 | -18.35 | -13.91 | -12 | -11.38 | -11.24 |
-1 | -17.13 | -9.28 | -4.94 | -2.92 | -2.12 |
0 | -17.06 | -7.79 | 0 | 4.46 | 6.82 |
1 | -17.06 | -7.09 | 1.43 | 9.18 | 14.13 |
2 | -17.06 | -5.63 | 1.52 | 10.40 | 18.36 |
[1] |
IPCC. Climate Change 2014: Impact, Adaptation, and Vulnerability. Cambridge: Cambridge University Press, 2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
赵慧颖, 田宝星, 宫丽娟, 等. 近308年来大兴安岭北部森林植被气候生产潜力及其对气候变化的响应. 生态学报, 2017, 37(6): 1900-1911.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
张锐. 甘青新1959—2008年草地气候生产潜力的变化特征与预测研究. 兰州: 西北师范大学, 2011.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
周广胜, 张新时. 全球气候变化的中国自然植被的净第一性生产力研究. 植物生态学报, 1996, 20(1): 11-19.
本文根据已建立的植物生理生态学特点与水热平衡关系的植物净第一性生产力模型对中国自然植被的净第一性生产力现状及全球变化后的自然植被的净第一性生产力进行了分析,给出了中国陆地生态系统自然植被的净第一性生产力在全球气候变化条件下的变化图景,为合理开发、利用自然资源,以及监测和预测中国陆地生态系统自然植被净第一性生产力的变化及应采取的策略提供了科学依据。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
徐雨晴, 周波涛, 於琍, 等. 1961—2010年中国气候生产潜力时空格局变化及其潜在可承载人口分析. 气象与环境学报, 2019, 35(2): 84-91.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
李振杰, 段长春, 金莉莉, 等. 云南省气候生产潜力的时空变化. 应用生态学报, 2019, 30(7): 2181-2190.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
罗布, 边多, 白玛, 等. 藏北高寒牧区NPP的时空变化特征及2 ℃全球变暖背景下的预估. 冰川冻土, 2020, 42(2): 653-661.
利用多源气象要素数据估算了1998 - 2016年的藏北高寒牧区植被净初级生产力(Net Primary Productivity, NPP)的变化特征并预估了其在2 ℃全球变暖背景下的变化趋势, 结果表明: 研究区域71.9%的NPP呈上升趋势, 仅中部部分区域有下降趋势; 平均NPP以每年0.54%速率增加, 同期气温和降水均呈增加趋势, NPP和气温在2007前后有显著增加趋势; 总体来说降水是影响NPP的最主要气候因子, 且随着纬度升高其影响越来越大, 气温对于NPP的影响从东南向西北依次递减, 在西北地区出现弱的负相关; 在2 ℃全球变暖大背景下, 分析得出IPCC“典型浓度路径”(Representative Concentration Pathways, 简称RCPs)三种温室气体排放情景下(RCP2.6、 RCP4.5、 RCP8.5)的NPP平均状态几乎没有变化, 其影响仅限于对研究区东南部的较高NPP有较小的改善作用, 其作用依次为高浓度排放≈中浓度排放>低浓度排放, 表明气候变暖对研究区NPP影响有限, 预估结果对认清高原地区气候变化下NPP时空变化特征有重要意义。
[
Based on the TRMM satellite precipitation data and the observed temperature data, using the Thornthwaite Memorial model, the net primary production (NPP) variation in the alpine pastoral areas of northern Tibetan Plateau from 1998 to 2016 and the NPP variation tendency under the future climate change were estimated. The results show that the area with rising tendency of NPP in the study area, accounting for 71.9% of the total area, was greater than declining tendency. The average annual increase rate of NPP was 0.54%, and the temperature and precipitation had increased in the same period. NPP and temperature increased significantly around 2007. By analyzing the influence of climate factors on NPP, it was found that precipitation was the dominant factor in the region, and with the increase of latitude, the influence of temperature was more significant only in a small eastern region. It was estimated that the NPP changing tendency under climate change showed that the average state of NPP in the study area has almost no change under the three emission scenarios (RCP2.6, RCP4.5, RCP8.5). The effect was only limited to the higher NPP areas in the southeast of the study region, where there was a slight improvement effect; the improvement effect was RCP8.5 ≈ RCP4.5 > RCP2.6, indicating that climate warming had limited effect on NPP improvement in the study area. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
周刊社, 杜军, 袁雷, 等. 西藏怒江流域高寒草甸气候生产潜力对气候变化的响应. 草业学报, 2010, 19(5): 17-24.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
赵雪雁, 王伟军, 万文玉, 等. 近50年气候变化对青藏高原青稞气候生产潜力的影响. 中国生态农业学报, 2015, 23(10): 1329-1338.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
赵雪雁, 万文玉, 王伟军. 近50年气候变化对青藏高原牧草生产潜力及物候期的影响. 中国生态农业学报, 2016, 24(4): 532-543.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
孙鸿烈, 郑度, 姚檀栋, 等. 青藏高原国家生态安全屏障保护与建设. 地理学报, 2012, 67(1): 3-12.
青藏高原对我国乃至亚洲生态安全具有重要的屏障作用。在全球变化和人类活动的综合影响下,青藏高原呈现出生态系统稳定性降低、资源环境压力增大等问题,突出表现为:冰川退缩显著、土地退化形势严峻、水土流失加剧、生物多样性威胁加大与珍稀生物资源减少、自然灾害增多等。这些问题严重影响了青藏高原区域生态安全屏障功能的发挥。针对当前高原生态安全状况,在总结相关研究成果和生态建设实践经验的基础上,提出了加强青藏高原国家生态安全屏障保护与建设的对策建议:加强气候变化对青藏高原生态屏障作用影响及区域生态安全调控作用的基础研究;系统开展高原生态安全屏障保护和建设关键技术研究与示范推广;部署建设生态屏障功能动态监测体系,加强生态安全屏障保护与建设成效评估,构建评估体系和标准,并凝练经验,以系统提升国家生态安全屏障的总体功能,在应对全球变化中占据主动地位。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
彭守璋. 中国1 km分辨率逐月平均气温数据集(1901—2017). 国家青藏高原科学数据中心, 2020, Doi: 10.11888/Meteoro.tpdc.270931.CSTR:18046.11.Meteoro.tpdc.270961.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
国家基础地理信息中心. 青藏高原1∶100万行政边界数据(2017). 国家青藏高原科学数据中心, 2019, Doi: 10.11888/Geogra.tpdc.270001.CSTR:18046.11.Geogra.tpdc.270001.
[National Basic Geographic Information Center. Administrative boundaries data at 1∶1000000 scale over the Tibetan Plateau (2017). National Tibetan Plateau Data Center, 2019, Doi: 10.11888/Geogra.tpdc.270001.CSTR:18046.11.Geogra.tpdc.270001.]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
马伟东, 刘峰贵, 周强, 等. 1961—2017年青藏高原极端降水特征分析. 自然资源学报, 2020, 35(12): 3039-3050.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
吴珊珊, 姚治君, 姜丽光, 等. 基于MODIS的长江源植被NPP时空变化特征及其水文效应. 自然资源学报, 2016, 31(1): 39-51.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
王林林. 柴达木盆地GPP时空变化特征及其影响因素分析. 兰州: 西北师范大学, 2016.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
王炎强, 赵军, 李忠勤, 等. 1977—2017年萨吾尔山冰川变化及其对气候变化的响应. 自然资源学报, 2019, 34(4): 802-814.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
IPCC. Climate change 2014:Synthesis report. In:Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC, 2014: 151.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
陈舒婷, 郭兵, 杨飞, 等. 2000—2015年青藏高原植被NPP时空变化格局及其对气候变化的响应. 自然资源学报, 2020, 35(10): 2511-2527.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
刘正佳, 邵全琴, 王丝丝. 21世纪以来青藏高寒草地的变化特征及其对气候的响应. 干旱区地理, 2015, 38(2): 275-282.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |