
全球二氧化碳浓度非均匀分布条件下碳排放与升温关系的统计分析
Statistical analysis of the relationship between carbon emissions and temperature rise with the spatially heterogenous distribution of carbon dioxide concentration
为定量评估全球二氧化碳浓度非均匀分布条件下碳排放与升温的关系,采用空间自相关分析与空间联立方程组模型,基于1度、2度与3度空间分辨率的全球二氧化碳浓度,碳排放与近地面气温等格点数据,揭示了2003—2015年全球二氧化碳浓度的空间分布聚集特征并估计了碳排放对升温的影响系数。结果发现:二氧化碳浓度在空间上表现为北半球高浓度值聚集与南半球低浓度值聚集的分布型。利用二氧化碳浓度非均匀分布的参数条件对碳排放与升温影响的估计结果表明,代入二氧化碳浓度非均匀分布这一参数会小幅拉低碳排放对升温影响的估计结果。研究表明,全球二氧化碳浓度非均匀分布是当前评估碳排放升温影响亟待引入的参数;同时由于估计结果的空间尺度效应的存在,相关参数的空间范围与分辨率的选择也需要关注。
In order to quantify the relationship between carbon emissions and temperature rise with the spatially heterogenous distribution of carbon dioxide concentration, this paper used the spatial autocorrelation analysis and the spatial simultaneous equations model to reveal the spatial distribution and aggregation characteristics of global carbon dioxide concentration during 2003-2015 and estimated the impact of carbon emissions on temperature rise based on the grid data of global carbon dioxide concentration, carbon emissions and temperature. The results indicate that carbon dioxide concentration has high value in the northern hemisphere and low value in the southern hemisphere. Spatially heterogenous distribution of carbon dioxide concentration will slightly decrease the estimation results of the impact of carbon emissions on temperature rise. The results show that the spatially heterogenous distribution is an important parameter that should be introduced into the assessment of global warming. At the same time, due to the existence of the spatial scale effect, the selection of spatial range and resolution deserves more attention.
二氧化碳浓度 / 二氧化碳非均匀分布 / 碳排放 / 经济影响 / 社会代价 {{custom_keyword}} /
carbon dioxide concentration / spatially heterogenous distribution of carbon dioxide / carbon emissions / economic impact / social cost {{custom_keyword}} /
表1 模型指标含义与描述性统计Table 1 Model indicators and descriptive statistics |
变量 | 样本数/个 | 说明及单位 | 平均值 | 标准差 | 最小值 | 最大值 |
---|---|---|---|---|---|---|
CO2 | 219193 | 陆地二氧化碳浓度/ppm | 383.63 | 7.68 | 367.87 | 401.32 |
rain | 219193 | 陆地降水量/mm | 60.31 | 62.20 | 0 | 885.05 |
pGDP | 219193 | 人均GDP/(万元/人) | 2.59 | 2.93 | 0 | 19.94 |
POP | 219193 | 人口数/万人 | 28.469 | 108.05 | 0 | 3260.71 |
T | 219193 | 陆地近地面气温/(0.1 ℃) | 91.01 | 147.74 | -277.42 | 316.17 |
E | 219193 | 陆地二氧化碳排放/(t/km2) | 199.42 | 2122.87 | 0 | 176601.60 |
DEM | 219193 | 陆表地海拔高度/km | 0.60 | 0.83 | -0.1575 | 6.21 |
表2 联立方程组模型计量结果Table 2 Estimation results of simultaneous equations model |
变量 | 模型组一:不考虑CO2浓度 | 模型组二:考虑CO2浓度 | ||||||
---|---|---|---|---|---|---|---|---|
OLS | 2SLS | 3SLS | GSLS | GS2SLS | GS3SLS | |||
dT | lnE | 0.0182*** | 0.191*** | 0.192*** | 0.0158*** | 0.186*** | 0.187*** | |
(0.0030) | (0.0065) | (0.0065) | (0.0030) | (0.0065) | (0.0065) | |||
lnCO2 | 16.95*** | 15.59*** | 15.80*** | |||||
(1.082) | (1.092) | (1.092) | ||||||
WlnCO2 | 0.372*** | 0.268*** | 0.255*** | |||||
(0.0401) | (0.0406) | (0.0406) | ||||||
lnrain | -0.0075 | 0.134*** | 0.0238* | -0.0058 | 0.130*** | 0.0242* | ||
(0.0135) | (0.0143) | (0.0142) | (0.0135) | (0.0143) | (0.0142) | |||
lnrain2 | -0.0003 | 0.0045*** | 0.0025*** | 0.0001 | 0.0041*** | 0.0027*** | ||
(0.0010) | (0.0010) | (0.0010) | (0.0010) | (0.0010) | (0.0010) | |||
Longitude | 0.0011*** | -0.0005* | -0.0004 | 0.001*** | -0.0002** | -0.0004 | ||
(0.0002) | (0.0002) | (0.0002) | (0.0002) | (0.0002) | (0.0002) | |||
Latitude | 0.0032*** | 0.0115*** | 0.0136*** | -0.0019** | 0.0076*** | 0.0097*** | ||
(0.0007) | (0.0007) | (0.0007) | (0.0008) | (0.0009) | (0.0009) | |||
DEM | -0.0628*** | -0.0185 | -0.0107 | -0.0579** | -0.0151 | -0.0133 | ||
(0.0243) | (0.0245) | (0.0245) | (0.0243) | (0.0245) | (0.0245) | |||
常数项 | 0.260*** | 0.582*** | -0.166** | -102.6*** | -93.69*** | -95.59*** | ||
(0.0733) | (0.0747) | (0.0741) | (6.435) | (6.494) | (6.494) | |||
Wald chi2 | 14.0*** | 153.4*** | 1076.4*** | 53.7*** | 152.7*** | 1369.9*** | ||
R2 | 0.040 | 0.039 | 0.039 | 0.021 | 0.021 | 0.020 | ||
lnE | lnT | 96.72*** | 97.33*** | 96.27*** | 96.85*** | |||
(0.495) | (0.494) | (0.496) | (0.494) | |||||
lnCO2 | 3.271*** | 3.181*** | ||||||
(0.738) | (0.738) | |||||||
WlnCO2 | 0.523*** | 0.522*** | ||||||
(0.0293) | (0.0293) | |||||||
lnPOP | 0.0599*** | 0.0588*** | 0.0603*** | 0.0592*** | ||||
(0.0049) | (0.0048) | (0.00486) | (0.00481) | |||||
lnPOP2 | 0.0033*** | 0.0033*** | 0.00334*** | 0.00328*** | ||||
(0.0003) | (0.0003) | (0.0003) | (0.0003) | |||||
变量 | 模型组一:不考虑CO2浓度 | 模型组二:考虑CO2浓度 | ||||||
OLS | 2SLS | 3SLS | GSLS | GS2SLS | GS3SLS | |||
lnE | lnpGDP | 0.858*** | 0.881*** | 0.757*** | 0.773*** | |||
(0.0146) | (0.0145) | (0.0156) | (0.0155) | |||||
lnpGDP2 | 0.0280*** | 0.0292*** | 0.0237*** | 0.0246*** | ||||
(0.0007) | (0.0007) | (0.0007) | (0.0007) | |||||
Longitude | 0.0103*** | 0.0104*** | 0.010*** | 0.010*** | ||||
(0.0002) | (0.0002) | (0.0002) | (0.0002) | |||||
Latitude | 0.0559*** | 0.0563*** | 0.0508*** | 0.0513*** | ||||
(0.0007) | (0.0007) | (0.0008) | (0.0008) | |||||
DEM | 0.535*** | 0.554*** | 0.517*** | 0.534*** | ||||
(0.0186) | (0.0185) | (0.0186) | (0.0185) | |||||
常数项 | -771.4*** | -776.2*** | -790.0*** | -794.2*** | ||||
(3.960) | (3.949) | (5.763) | (5.757) | |||||
Wald chi2 | 9553.6*** | 76419.8*** | 7689.6*** | 76892.8*** | ||||
R2 | 0.275 | 0.275 | 0.276 | 0.276 | ||||
样本量/个 | 202332 | 202332 | 202332 | 202332 | 202332 | 202332 |
注:***、**、*分别表示P<0.01、P<0.05、P<0.1,括号内的值表示标准误。 |
表3 不同分辨率数据二氧化碳浓度与二氧化碳排放对升温影响替代弹性Table 3 Alternative elasticity of the impact of carbon dioxide concentration and carbon dioxide emissions on temperature rise with different resolution data |
数据分辨率 | ||
---|---|---|
GS2SLS | GS3SLS | |
1度 | 83.82 | 85.03 |
2度 | 164.63 | 172.71 |
3度 | 179.57 | 181.23 |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
赵宗慈. 五个全球大气海洋环流模式模拟二氧化碳增加对气候变化的影响. 大气科学, 1990, (1):118-127.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
Recent reconstructions of Northern Hemisphere temperatures and climate forcing over the past 1000 years allow the warming of the 20th century to be placed within a historical context and various mechanisms of climate change to be tested. Comparisons of observations with simulations from an energy balance climate model indicate that as much as 41 to 64% of preanthropogenic (pre-1850) decadal-scale temperature variations was due to changes in solar irradiance and volcanism. Removal of the forced response from reconstructed temperature time series yields residuals that show similar variability to those of control runs of coupled models, thereby lending support to the models' value as estimates of low-frequency variability in the climate system. Removal of all forcing except greenhouse gases from the approximately 1000-year time series results in a residual with a very large late-20th-century warming that closely agrees with the response predicted from greenhouse gas forcing. The combination of a unique level of temperature increase in the late 20th century and improved constraints on the role of natural variability provides further evidence that the greenhouse effect has already established itself above the level of natural variability in the climate system. A 21st-century global warming projection far exceeds the natural variability of the past 1000 years and is greater than the best estimate of global temperature change for the last interglacial.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
赵金彩, 钟章奇, 卢鹤立, 等. 基于夜间灯光的城市居民直接碳排放及影响因素: 以中原经济区为例. 自然资源学报, 2017,32(12):2100-2114.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
孙宁, 李廉水. 基于SVAR模型的气温变化对南京市工业经济的影响研究. 气象, 2009,35(10):90-96.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
刘宇, 吕郢康, 周梅芳. 投入产出法测算CO2排放量及其影响因素分析. 中国人口·资源与环境, 2015,25(9):21-28.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
刘莉娜, 曲建升, 黄雨生, 等. 中国居民生活碳排放的区域差异及影响因素分析. 自然资源学报, 2016,31(8):1364-1377.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
符传博, 丹利, 冯锦明, 等. 我国对流层二氧化碳非均匀动态分布特征及其成因. 地球物理学报, 2018,61(11):4373-4382.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
李燕丽, 邢振雨, 穆超, 等. 移动监测法测量厦门春秋季近地面CO2的时空分布. 环境科学, 2014,35(5):1671-1679.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
杨成荫, 王汉杰, 韩士杰, 等. 大气CO2浓度非均匀动态分布条件下的气候模拟. 地球物理学报, 2012,55(9):2809-2825.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
Polycyclic aromatic compounds (PACs) are known due to their mutagenic activity. Among them, 2-nitrobenzanthrone (2-NBA) and 3-nitrobenzanthrone (3-NBA) are considered as two of the most potent mutagens found in atmospheric particles. In the present study 2-NBA, 3-NBA and selected PAHs and Nitro-PAHs were determined in fine particle samples (PM 2.5) collected in a bus station and an outdoor site. The fuel used by buses was a diesel-biodiesel (96:4) blend and light-duty vehicles run with any ethanol-to-gasoline proportion. The concentrations of 2-NBA and 3-NBA were, on average, under 14.8 microg g(-1) and 4.39 microg g(-1), respectively. In order to access the main sources and formation routes of these compounds, we performed ternary correlations and multivariate statistical analyses. The main sources for the studied compounds in the bus station were diesel/biodiesel exhaust followed by floor resuspension. In the coastal site, vehicular emission, photochemical formation and wood combustion were the main sources for 2-NBA and 3-NBA as well as the other PACs. Incremental lifetime cancer risk (ILCR) were calculated for both places, which presented low values, showing low cancer risk incidence although the ILCR values for the bus station were around 2.5 times higher than the ILCR from the coastal site.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
姚志刚, 赵增亮, 韩志刚. AIRS观测的东亚夏季平流层重力波特征. 地球物理学报, 2015,58(4):1121-1134.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
彭静, 丹利. 百年尺度地球系统模式模拟的陆地生态系统碳通量对CO2浓度升高和气候变化的响应. 生态学报, 2016,36(21):6939-6950.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
邱新国, 谭靖磊. 产业结构调整对节能减排的影响研究: 基于中国247个地级及以上城市数据的实证分析. 科技管理研究, 2015, (10):239-243.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |